

144 100)

XD

VI

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIQ SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER. RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER OBLIGATIONS

A

CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “Equipment”), and any copies of Radio
Shack software included with the Equipment or licensed separately (the “Software’) meets the specifications, capacity, capabilities.
versatility, and other requirements of CUSTOMER

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

C
D
E

For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION The warranty is void if the Equipment’s case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use 1f a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense RADIO SHACK has no obligation to replace or repair expendable items

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an "AS IS" basis, without warranty The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK

Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER

LIMITATION OF LIABILITY

A

[epRes)

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT"" OR “'SOFTWARE"" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR “SOFTWARE™ IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT" OR "SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR ""SOFTWARE"
INVOLVED

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years
after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following
provisions:

B

C

D

m

G

Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software

Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to
the Software

CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
function

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically
provided in this Software License. Customer is expressly prohibited from disassembling the Software

CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in
the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use

CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving capies of the Software from
CUSTOMER.

All copyright notices shall be retained on all copies of the Software

APPLICABILITY OF WARRANTY

A

The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary
from state to state.

Tses):

TRS-80® Model 4/4P
Disk System Owner's Manual

The FCC Wants You to Know . . .

This equipment generates and uses radio frequency energy. If not installed and used properly, that is, in strict accordance with the
manufacturer's instructions, it may cause interference to radio and television reception.

It has been type tested and found to comply with the limits for a Class B computing device in accordance with the
specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such
interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment
off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

» Reorient the receiving antenna

» Relocate the computer with respect to the receiver

* Move the computer away from the receiver

 Plug the computer into a different outlet so that computer and receiver are on different branch circuits.

If necessary, you should consult the dealer or an experienced radio/television technician for additional suggestions. You may find
the following booklet prepared by the Federal Communications Commission helpful: How to Identify and Resolve Radio-TV
Interference Problems.

This booklet is available from the US Government Printing Office, Washington, DC 20402, Stock No. 004-000-00345-4.

Warning

This equipment has been certified to comply with the limits for a Class B computing device, pursuant to Subpart J of Part 15 of FCC
Rules. Only peripherals (computer input/output devices, terminals, printers, etc.) certified to comply with the Class B limits may be
attached to this computer. Operation with non-certified peripherals is likely to result in interference to radio and TV reception.

Model 4P Only

The TRS-80 Model 4P Computer (Catalog Number 26-1080) is equipped with an external I/O bus to enable connection of a Radio
Shack TRS-80 Five Meg Disk System (Catalog Number 26-1130). If you wish to connect the Five Meg Disk System to this /O bus,
the classification of the Model 4P is changed to Class A and the following warning applies:

Warning

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the
instructions manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a
Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection
against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to
cause interference in which case the user at his own expense will be required to take whatever measures may be required to
correct the interferences.

TRSDOS® Version 6 Operating System: © 1983 Logical Systems.
All Right Reserved. Licensed to Tandy Corporation.

BASIC: © 1983 Microsoft.
All Rights Reserved. Licensed to Tandy Corporation.

Disk System Owner’'s Manual TRSDOS Section:
© 1983 Tandy Corporation and Logical Systems. All Rights Reserved.

Disk System Owner's Manual BASIC Section:
©1983 Tandy Corporation. All Rights Reserved.

Reproduction or use, without express written permission from Tandy Corporation
or Logical Systems of any portion of this manual is prohibited. While reasonable
efforts have been taken in the preparation of this manual to assure its accuracy,
Tandy Corporation and Logical Systems assumes no liability resulting from any
errors or omissions in this manual, or from the use of the information contained
herein.

TRSDOS is a registered trademark of Tandy Corporation.

10987654

Introduction

About the Model 4/4P

Congratulations on the purchase of your TRS-80 Model 4 or Model
4P Disk System. Your new Model 4 or Model 4P is a compact
computer that is perfect for business needs, as well as personal use.
You will find it to be a valuable tool which will save you work as well
as give you hours of enjoyment. Its basic features include:

® 64K (65536 characters) of random access memory, expandable to
128K

© High-speed Z-80A microprocessor, the “brains” of the computer

@ Upper and lower case text display of 80 characters by 24 lines or
64 by 16 (software selectable)

@ Compatible with Radio Shack’s Model Il Software Library.

@ One or two built-in drives that let you use single-sided,
double-density floppy disks.

@ Sound generation.

® 70-key console keyboard which includes three function keys and
numeric keypad.

® Built-in printer interface.

As your needs grow — you can expand your Model 4 or Model 4P to
include hard disks, external floppy disk drives (Model 4 only),
high-resolution graphics, printers, RS-232C communications and
more.

About This Manual

This manual shows how you can use your disk system to:

e Store, retrieve or manipulate information on disk (using TRSDOS).
® \Write programs for Model 4 and Model 4P (using BASIC).

The Model 4/4P’s operating system is TRSDOS Version 6.
Throughout this manual, we refer to this system simply as TRSDOS.

In the Introduction To Your Disk System manual, we covered all the
essential information to get you started. As you learn more about
TRSDOS and programming, you can take advantage of its many
features explained in this manual.

Since this is a reference manual, you don’t have to read it from front
to back. If you are a programmer, you'll find a lot of useful information
in this manual. If you are an advanced programmer, you'll find
additional technical information available in The Model 4/4P Technical
Reference Manual (Cat. No. 26-2110). This manual is available at
your local Radio Shack store.

Part I/ TRSDOS

Section I/ Using TRSDOS describes how to start up
TRSDOS, what TRSDOS Ready means, and some general
information on how TRSDOS works.

Section Il/ TRSDOS Commands contains a number of
commands and utilities you will find helpful.

Part Il/ BASIC

Section lll/ Operations explains how to start up and
operate BASIC.

Section IV/ BASIC Language describes (1) BASIC
concepts, (2) how to store data on disks, and (3) each
BASIC statement and function.

Table of Contents

Page
Introduction
About The Model 4/4P i
About ThisManual............ i -
Part I/ TRSDOS
Section I/ Using TRSDOS., 1-3
How the Computer Uses TRSDOS 1-5
TRSDOS Notationsco i 1-5
TRSDOS Termsooiii e 1-5
TRSDOS Abbreviations i, 1-6
Loading TRSDOS 1-6
TRSDOS Ready. ... 1-6
Executinga Commando 1-7
Disk Files. 1-7
DeviCes ... 1-10
Section I/ TRSDOS Commands............................. 1-11
Introduction 1-13
How to Use This Section 1-14
SyNtaX ... 1-15
Part Il/ Basic
Introduction to BASIC
About ThisManual............. 2-3
Notations i 2-3
TermMS 2-4
Terms Used in Chapter 7 for Brevity 2-4
Section lll/ Operations., 2-7
Chapter 1/ Sample Session................cviiiiiinnnn. 2-9
Chapter 2/ Command And Execution Section 2-13
Chapter 3/ Line EditMode 2-17
Section IV/BASIC Language.cccvvnun... 2-23
Chapter 4/ BASIC Conceptsooviiiinn. 2-25
Chapter 5/ Disk Files. it 2-51
Chapter 6/ Introduction To BASIC Statements
And Functions. i 2-59
Chapter 7/ BASIC Statements
And Functions. i 2-65
Part lll/ Appendices i, A-1
Appendix A/ Job Control Language A-3
Simple JCL Execution A-4
Simple JCL Compiling A-12
Advanced JCL Compiling A-25
Using TRSDOS JCL To Interface With
Applications Programs....................... A-30
Practical Examples Of TRSDOS JCL Files.. A-33
Appendix B/ Model 4/4P Hardware
Keyboard Code Map A-35
Specifications.oo i A-39

Appendix C/ Character Codesccunn. A-45
Appendix D/ Error Messages and Problems

In Case Of Difficulty A-61

TRSDOS ... A-63

BASIC. .. A-70
Appendix E/ Converting TRSDOS Version 1 Basic Programs

to TRSDOS Version 6 BASIC Programs A-77
Appendix F/ BASIC Keywords and Derived Functions

Reserved BASIC Words A-81

Internal Codes for BASIC Keywords A-82

Derived BASIC Functions................... A-84
Appendix G/ BASIC Worksheet

Video ... A-85
Appendix H/ Glossary............ .o, A-87
Appendix I/ TRSDOS Programs A-93
Appendix J/ Memory Maps............. ..., A-105
Appendix K/ Using The Device-Related Commands A-108
Appendix L/ 50 Hz AC Power A-117
Appendix M/ Backup Limited Diskettes A-119

Part I/TRSDOS Version 6

) -;
w.v
0
10
lo

Section I/ Using TRSDOS

.

Section I/ Using TRSDOS

How The Computer Uses TRSDOS

Whenever you are using a program which runs under TRSDOS, your
computer will, from time to time, need to reference TRSDOS. It
always looks for TRSDOS on Drive 0.

For this reason, you must at all times have TRSDOS in Drive 0.

TRSDOS Notations

For clarity and brevity, we use some special notations and type styles
in this section.

CAPITALS and punctuation
indicates material that you must enter exactly as it appears or
material that you see on your computer’s video display.

(KEYBOARD CHARACTER)
indicates key you press.

italics
represents words, letters, characters, or values that you supply.

TRSDOS Terms

Below is a listing of terms which we use frequently in this section. The
italicized words represent variable information which you must supply.

command represents the TRSDOS command you want to
execute. command can be in upper or lowercase
letters.

(parameters) is a list of one or more values that may be needed

by the command. Some commands have no
parameters. Most parameters are optional.
Brackets [] around any word in a command line
indicate that it is optional.

number any decimal or hexadecimal numeric expression.
Hexadecimal expressions must be in the X‘'nn’
format for bytes or X'nnnn’ format for words,
where nn is the hexadecimal value.

filespec is a standard TRSDOS file specification having the
general form:
filename/ext.password:drive

devspec is (1) one of six standard TRSDOS device
specifications, or (2) a user created device
specification having the general form:
xtwo-letter abbreviation

diskette refers exclusively to a floppy diskette.

disk refers to a floppy diskette, hard disk, or Memdisk.

disk ID refers to the disk NAME, creation date, and Master
Password.
I/O refers to a transfer of data (Input/Output).

TRSDOS Abbreviations

You can abbreviate a parameter to its first letter (unless otherwise
stated in the command explanation). You can also abbreviate YES to
Y and NO to N.

Loading TRSDOS

When you install and power up your system, you'll see the TRSDOS
start-up logo. This means you're in the TRSDOS Version 6 Operating
System. You then need to enter the current date in the form
mm/dd/yy. For example, for June, 14, 1983, type:

#6/14/83 (ENTER)

The system displays the date in expanded form (for example, Tue,
Jun 14, 1983).

You may use any of the ASCII characters in the range 32 (X'20’)
through 39 (X'27’), 41 (X'29’) through 47 (X'2F’), and 58 (X'3A’) to
separate the month and day and day and year. See Appendix C for a
complete list of ASCII character codes.

TRSDOS Ready

Whenever you see the TRSDOS Ready prompt you know that you are
communicating with TRSDOS — not COBOL, PAYROLL, or any of
your application programs. Communicating with TRSDOS allows you
to do one of these operations:

® execute a TRSDOS system command or utility program
e execute an application program

When an error occurs, it comes from one of two places: TRSDOS or
the application program that you are running. If it comes from
TRSDOS, look in Appendix D or the TRSDOS command section for
an explanation of the error message. If it comes from the application
program that is running, you'll need to see the manual which comes
with the application program for an explanation of the error message.

1-6

Executing A Command

Disk Files

You can execute a TRSDOS system command whenever you see the
TRSDOS Ready prompt. The command you type can consist of up to
79 upper or lower case characters. You must enter the command by
pressing (ENTER).

For example, if you want to see the TRSDOS system commands,
type:

.18 (ENTER

TRSDOS displays a list of all the available system commands and
returns to TRSDOS Ready:

Library <A>
Arrpend Cat Cls Copy Device Dir Do
Filter Lib Link lList Load Memory Remove
Rername Reset Route Run Set Tof

Likrary «
Attrib Auto Build Create Date Debug Dump
Free Purge Time Verify

Library <C>x

Forms Setcom Setki Sroal Svsden Svstem

If you want this display to print on the printer, type CTRD().
Whenever you press this key sequence, what is displayed on the
screen is printed on the printer.

If you type (R) at the TRSDOS Ready prompt, TRSDOS
redisplays the last executed TRSDOS command and executes it
again.

If you type at the TRSDOS Ready prompt, TRSDOS
executes an Immediate Execution Program (IEP) that is stored in the
SYS13/8YS file. See Appendix |, “Immediate Execution Program” for
information on implementing an IEP.

You can keep a record of anything you type into your Model 4 by
storing it on disk in a “disk file.” A disk file can contain a program, a
collection of data, a project report you intend to make, or almost
anything you want it to contain. But whatever it is, if you want to keep
it permanently, you'll have to store it in a disk file.

When the computer stores the file, it records the name of the file and
its disk location in a special place on the disk called the disk’s
directory. Whenever you want to access the file, the computer can
immediately find its location by using this directory.

Filespec

Whenever you create a disk file, you need to give it a name. This
name is just one part of a file specification — filespec, for short. The
filespec is the standard TRSDOS format you'll use every time you
reference your file:

filename/ext.rpasswordsdrive

filename

The name of your file can be most anything you like, as long as it is
one to eight alphanumeric characters, the first of which must be a
letter. (The only names you cannot use are TO, ON, USING and
OVER.)

/extension

If you want to further identify your file, you can give it a second name
by adding an extension. An extension (indicated by /ext on our
filespec) is a sequence of one to three alphanumeric characters (the
first of which must be a letter) with a preceding slash (/).

You can use an extension to provide additional information on a file,
or you can use an extension to indicate the type of file you have.

Some TRSDOS commands require that you specify an extension or
the command assumes a default extension. You can override this
default by specifying only the slash (/), omitting additional characters
in the extension.

.password

A password protects a file by limiting access to it. You can accomplish
this protection via a password either when you create the file or with
the ATTRIB command.

A password is a sequence of up to eight alphanumeric characters, the
first of which must be a letter.

:drive

Often when you're using your computer, you'll have more than one
disk drive in use. You can speed up the file access time by specifying
the drive the desired file is on.

If you omit a drive number on the filespec, your computer
automatically starts looking for the file on all available drives,
beginning with Drive 0.

Here are some examples of valid TRSDOS filespecs:

DOPROG.OPEN
CLR/BAS:1
MOD16:4
STL12/TXT.ARCH:1
GAME1
THESIS/OLD:2
CONTEMP:3

You cannot use TO, ON, OVER, or USING as TRSDOS filespecs.

Partspecs

Certain system commands and utilities allow you to specify a
collection of files by using a “partspec.” A partspec is used with a
“wildcard” mask ($). When you use a wildcard in a partspec, it
represents a wildcard field and means “any character.” For example,
suppose the following files exist on a disk in Drive 1:

A ACORN
ADVANCE/DAT ADVISE/DAT
BILLING/CMD BILLING
BILLING/BAK BILLING/DAT

If you issue the command:
DIR A:1 (ENTER
TRSDOS displays these files:

A ACORN
ADVANCE/DAT ADVISE/DAT

All files on the disk that begin with the letter A are displayed because
when you specify a partspec, TRSDOS treats the command as “DIR
of all files that begin with ‘A’.”

If you issue the command:
DIR BILLING:1 (ENTER
TRSDOS displays:

BILLING BILLING/CMD
BILLING/DAT BILLING/BAK

Because you did not specify an extension, TRSDOS assumed that all
extensions are acceptable.

If you issue the command:
DIR /%A:1 (ENTER

TRSDOS displays the files on the disk which have an A as the
second character in their extension:

ADVANCE/DAT ADVISE/DAT
BILLING/DAT BILLING/BAK

Because you did not specify a filename, TRSDOS assumed that all
filenames are acceptable.

A wildcard character must always have at least one character to its
right. The following partspecs are identical:

A A%
ABHS A%/ %
A%/ $%%

Devices

There are two kinds of TRSDOS devices: physical and logical.

A physical device is a piece of your computer hardware: the video
display, the keyboard, the printer, etc.

A logical device (devspec) is a connection between TRSDOS and a
physical device.

TRSDOS lets you treat your devices independently, which means you
can sometimes substitute a device for another one. You can also
substitute a file for a device. See the LINK, ROUTE, and SET library
commands.

Devspec

When you want to access a device, you use its device specification or
devspec.

TRSDOS devices already have devspecs assigned to them. You
assign devspecs to devices that you create. The devspec is a
two-character abbreviation for the device. The first character must be
a letter. The second character can be a letter or a number. An
asterisk must precede the devspec.

Your original TRSDOS master diskette is configured with six devices.
They are:

Devspec Device

*KI Keyboard Input

*DO Display Output (Video)
*PR Printer

*Sl Standard Input

*SO Standard Output

*JL Job Log

These are known as system devices.

Drivers And Filters

Each device is controlled by its own driver program, filter program, or
both. You can change a device’s I/0O by manipulating its driver or filter
program. For more information on drivers and filters see the SET and
FILTER commands; see also Appendices | and K.

Section II/ TRSDOS Commands

Section II/ TRSDOS Commands

TRSDOS commands and utilities (typed in at the TRSDOS Ready
level) perform a variety of helpful operations:

Diskette Handling commands allow you to prepare your blank
diskettes for use or make copies of existing diskettes. Any time you
use a blank diskette, you should use this command:

FORMAT

If you want to change the way your computer system starts up and
initializes its parameters, you can use Initialization commands. For
example, you can use the FORMS commands to set your printer’s
parameters; or you can use the AUTO command to set your computer
to AUTOmatically perform a particular function at start-up. The

Initialization commands are:

AUTO
DATE
SETCOM
SYSGEN
TIME

BOOT
FORMS
SETKI
SYSTEM

You might find the Auxiliary commands helpful for such functions as
seeing what is on your disk or simply seeing what system commands

are available. They include:

DEVICE
DO

LIB
LOG
VERIFY

DIR
FREE
LIST
SPOOL

The File Handling commands and utilities allow you to copy, rename,
delete, or convert your disk files. These commands include:

APPEND
BACKUP
COMM
COPY
DEBUG
PURGE
RENAME
TAPE100

ATTRIB
BUILD
CONV
CREATE
PATCH
REMOVE
REPAIR

The Device Handling commands allow you to set, filter, route, or
reset your devices. Be sure you have a good understanding of
devices before you use these commands! These commands include:

FILTER

MEMDISK

ROUTE

LINK
RESET
SET

Machine Language File Handling commands create and execute
machine language disk files. These commands include:

DUMP LOAD
MEMORY RUN

How to Use This Section

This section contains an alphabetic listing of all TRSDOS commands
and utilities. The commands and utilities for advanced programmers
are marked as “Advanced Programmer’s Utilities” and “Advanced
Programmer’'s Commands.”

Commands

Commands are system operations that can be used at TRSDOS

Ready.

To see a list of all library commands, use the LIB command. Type:

LIB (ENTER

and the following list is Displayed:

Library <A
Arrend Cat Cls Copry Device Dir Do
Filter Lib Link List Load Memory Remoue
Rename Reset FRoute Run Set Tof

Library <B:>

Attrib Auto Build Create Date Debug Dump
Free Purge Time Yerify

Library «<C>»

Forms Setcom Setki Srool Svysden Svstem
Utilities
Utilities use some or all of user memory. They return to TRSDOS

Ready; under most conditions you cannot use them effectively within
programs.

The utilities are:
BACKUP COMM

CONV FORMAT
LOG PATCH
REPAIR

Syntax

Entry Organization
Each entry in this section is identified as either a command or a utility.

The command’s “syntax” is the first line you see after the keyword.

Use it as your guide to type in a command. (See “Syntax” below for
details.) If a word or value in the syntax is highlighted, you need to
type in that word or value for the command to work.

A description of the command or utility follows the syntax. This
description tells you what the command or utility does. Next, the entry
includes additional information on the parameters of the command. A
command may require you to supply some values.

The definition also may offer several “options” that customize the
command to your needs. These optional parameters increase the
usefulness of the commands but are not necessary for normal
operation. Values and options are discussed in the additional
parameter information.

Finally, each entry gives examples of the command’s use.

The command’s syntax tells you what format to use when you type
the command.

For example, here is the syntax for the REMOVE command:
REMOVE filespec, filespec . ..

italicized words in a command’s syntax indicate values that you
supply. In this case, the value that you supply is a filename.
Remember that a command’s required parameters are highlighted,
so the beginner can skip values not boldfaced.

If you want to remove the disk file named SAMPLE in Drive 1, type:
REMOVE SAMPLE:1 (ENTER

The syntax for the COPY command is:
COPY source [TO] destination [(parameters)]

Here, you must supply the name of the source filespec you wish to
copy and the destination filespec to which you want it copied.
Remember that TO is optional and cannot be used as a TRSDOS
filespec. For example:

COPY NEW/DAT:1 TO NEWDAT/ONE:Z (ENTER

copies the Drive 1 file NEW/DAT onto the diskette in Drive 2 and
names the new file NEWDAT/ONE.

The COPY command offers four optional parameters. They are:

LRL
CLONE
ECHO
X

If you need the LRL parameter (the LRL parameter tells TRSDOS to
assign a specific record length to a destination filespec), type:

COPY NEW/DAT:1 TO NEWDAT/ONE:2 (LRL=128) (ENTER

Every command uses some variation of the syntax lines discussed
above. ,

APPEND

Command
APPEND source [TO] destination [(parameters)]

Appends the contents of the source onto the end of the contents of
the destination. (The contents of the source file remain the same.)

You can use APPEND to combine two files on a disk.

The source is a valid TRSDOS filespec or input devspec, and
destination is a valid TRSDOS filespec.

The parameters are:

ECHO echoes the characters to the screen when appending a
device to a file.

STRIP backspaces the destination file one byte before the
append begins. Use this parameter with files, such as
SCRIPSIT files, that have an “internal end of file marker.”

APPEND is most useful for data files because you can use APPEND
only with ASCI! files. You cannot APPEND files that are in the “load
module format.” To APPEND BASIC programs you must save them in
ASCII format by specifying the A option with the BASIC SAVE
command.

If you omit an extension with the destination filespec, TRSDOS tries to
find the destination filename with the same extension that the source
filespec has. If you want to force TRSDOS not to include an extension
with the destination filespec, include only the slash (/) and omit
additional characters when specifying the destination filespec.

Some programs (such as SCRIPSIT) place an end-of-file marker at
the end of a file. Use the STRIP parameter to remove this marker
when you APPEND a file. If you omit the STRIP parameter, TRSDOS
ignores the appended section of the file.

Examples
APPEND EAST/DAT:1 TO WEST/DAT:o (ENTER

adds the information in EAST/DAT on Drive 1 onto the end of the
information inn WEST/DAT on Drive 0.

APPEND EAST/DAT:1 TO WESBT/DAT:@® (STRIP) (ENTER

adds the contents of EAST/DAT to the end of the contents of
WEST/DAT as in the previous example. However, APPEND removes
the last byte of WEST/DAT before appending.

APPEND *KI TO WEST/DAT:® (ENTER

appends the information that you type on the keyboard to the end of
WEST/DAT on Drive 0. Press (CONTRODSHIFD(@) (at the same
time) to end the append.

APPEND *KI TO WEST/DAT:® (ECHO) (ENTER

displays what you are appending to WEST/DAT as you type it. Press
CONTROLSHIFD(@) (at the same time) to end the append.

Error Conditions

If the records in source and destination are not the same length,
TRSDOS displays a “Files have different LRLs” error message. Use
the DIR command to display the file’s LRL. Use the COPY command
to change the LRL of a file.

If you omit destination, TRSDOS displays a “Destination spec
required” error message. Execute the command again, specifying
destination.

If you omit source, TRSDOS displays a “File spec required” error
message. Execute the command again, specifying source.

If you attempt to append a device to a device, TRSDOS displays a
“File spec required” error message. You must specify a filespec as
destination in an APPEND command.

If you omit the extension for destination filespec, TRSDOS tries to find
the destination filename with the same extension that source filespec
has. If TRSDOS cannot find that filespec, TRSDOS displays a “File
not in directory” error message.

Sample Uses
Suppose you have two data files, PAYROLL/A and PAYROLL/B.

PAYROLL/A PAYROLL/B
Atkins, W.R. Lewis, G.E.
Baker, J.B. Miller, L.O.
Chambers, C.P. Peterson, B.
Dodson, M. W. Rodriguez, F.
Kickamon, T. Y. R

You can combine the two files with the command:
APPEND PAYROLL/B TO PAYROLL/A (ENTER

1-18

PAYROLL/A now looks like this:

PAYROLL/A
Atkins, W. R.
Baker, J.B.
Chambers, C.P.
Dodson, M. W.
Kickamon, T. Y.
Lewis, G.E.
Miller, L. O.
Peterson, B.
Rodriguez, F.

PAYROLL/B is unaffected. To see the APPENDed file, type LIST
PAYROLL/A.

ATTRIB

Command
ATTRIB filespec (parameters)

Command
ATTRIB [.drive] (disk parameters)

Assigns protection passwords and attributes to a particular file or a
group of files.

You can use ATTRIB to protect a file with passwords.

For filespec ATTRIBs, the parameters are:

USER ="password” sets the user password to password. If this
parameter is omitted, the user password remains the same.
If USER = is specified with no password, then any current
user password is removed.

OWNER ="“password” sets the owner password to password.If
this parameter is omitted, the owner password remains the
same. If OWNER =is specified with no password, then any
current owner password is removed.

PROT = level specifies the protection level that is enforced if the
user password is specified. If this parameter is omitted, the
level is unchanged. You have to give a file an OWNER
password before you can set PROT. The optional levels for
access to a file are:

EXEC Execute only

READ Read and execute

UPDATE Update, read, and execute

WRITE Write, update, read, and execute
RENAME Rename, write, update, read, and execute
REMOVE Remove, rename, write, update, read, and

execute (allows total access except for
changing attributes with the ATTRIB
command.
FULL Allows total access
VIS specifies the filespec as visible in the directory
INV specifies the filespec as invisible in the directory. Use the
INV parameter to reduce the number of files that TRSDOS
displays when you issue a DIR command.

You can abbreviate the levels of PROTection to their first two letters
except for RENAME and REMOVE, which you can abbreviate to RN
and RM respectively.

1-20

For disk ATTRIBs, the parameters are:

LOCK protects all visible files not currently protected by setting
their user and owner passwords to the disk master
password.

UNLOCK removes the user and owner passwords from visible
files if their passwords match the disk master password.
MPW = “password” states the disk’s current master password. If
you don’t specify this option, TRSDOS prompts you for it, if

the password is not PASSWORD.

NAME[= “disk name”] specifies the new disk name. If this
parameter is omitted, the disk name remains the same.

PWI[="“password’] sets the new disk master password to
password. If this parameter is omitted, the disk master
password remains the same.

PW cannot be abbreviated.
drive defaults to Drive 0.

Assigning Protection Attributes To a File

Using the Owner and User Passwords. Passwords are first
assigned when the file is created. At that time, the owner and user
passwords are set at the same value (either the password you
specified, or a blank password if you did not specify one).

ATTRIB allows you to assign a file two different passwords. The user
password could be for the operator. It protects a file’s contents at a
certain protection level (set by PROT). For example, if you want an
operator to have limited access to a file, you can set the PROTection
level to READ. Then, using the user password, the operator will be
able only to read (list) and execute the file, not change, rename,
re-attrib, or remove it.

In the same manner, the owner password could be for the
programmer. Using the owner password, the programmer could
change, remove, re-attrib, or rename the same file. (When you use
the owner password to access a file, TRSDOS ignores the
PROTection level.)

In short, the user password allows limited access to a file and the
owner password allows total access.

Examples

ATTRIB CUSTFILE/DAT:1
(USER= 0OWNER="BOSSMAN" sPROT=READ) (ENTER

sets the user password blank (so no password is necessary to access
the file), sets the owner password to BOSSMAN, and sets the
protection level to read and execute.

1-21

ATTRIB CUSTFILE/DAT.BOSSMAN
(USER="SBECRET" »PROT=EXEC+INV) (ENTER

re-attribs CUSTFILE/DAT. Note that the owner password BOSSMAN
was required to re-attrib the file. Now, CUSTFILE/DAT has the user
password SECRET, keeps owner password BOSSMAN, has the
protection level of execute only, and is invisible in the directory.

Assigning Protection Attributes To a Disk

The ATTRIB command also allows you to change the disk name, the
disk master password, and the password protection of all visible
filespecs.

Examples
ATTRIB (UNLOCK :NAME="MYDISK") (ENTER

removes all user and owner passwords from the visible filespecs on
Drive 0 if the filespecs’ current password matches the disk master
password. It also changes the disk name to MYDISK. Since the
current master password was not specified with the MPW parameter,
your computer asks you for it (if it is other than PASSWORD) before it
executes this command.

ATTRIB :1
(NAME="DATA" s PW="SECRET" +MPW="BOSSMAN") (ENTER

sets the disk name in Drive 1 to DATA, changes the master password
to SECRET if the current disk master password is BOSSMAN.

ATTRIB (LOCK) (ENTER

prompts you for the disk’s master password (if other than
PASSWORD) and changes the user and owner passwords of all
visible, non-password protected files to the disk’s current master
password. Since no drive was specified, the command is carried out
on Drive 0.

ATTRIB :1 (NAME) (ENTER)

prompts you for Drive 1’s disk master password (unless it is
PASSWORD). It then prompts you for the new disk name.

Error Conditions

If you specify invalid values or omit necessary quotes for an ATTRIB
parameter, TRSDOS displays the message “Attribute specification
error.” Check the parameters and try the command again.

If the disk master password is not PASSWORD, you must specify it
when executing an ATTRIB command from a JCL file. The JCL file
cannot prompt you for the password during execution. If you omit the
password, TRSDOS displays an “Invalid master password” error
message.

1-22

Sample Uses

Suppose you have a data file, PAYROLL, and you want an employee
to use the file in preparing paychecks. You want the employee to be
able to read the file but not to change it. Then use a command like:

ATTRIB PAYROLL (I sUSER="PAYDAY", OWNER="BANANA"
PROT=READ) (ENTER

Now tell the clerk to use the password PAYDAY (which allows read
only); while only you know the password, BANANA, which grants total
access to the file.

AUTO

Command
AUTO [parameters] [*][command line]

Stores an AUTO command line. This command line automatically
executes whenever you start up or reset TRSDOS. (That is, after you
enter the date and time, TRSDOS loads, executes the command line,
and displays the TRSDOS Ready or BASIC prompt.)

You can use AUTO to automatically run a program after you type in
the date.

command line is limited to 74 characters in length.
The parameters are:

.drive specifies which drive to store the AUTO command line on.

?[:drive] displays any AUTO command line stored on drive. (The
default is Drive 0.)

=[:drive] executes any AUTO command line stored on drive.
(The default is Drive 0.)

In most cases, you can override the AUTO command during start-up
or reset by (1) holding down the (ENTER) key, or (2) pressing (BREAK)
while the auto command is executing.

The exception to this is when you store the AUTO command with the
* parameter (which disables the (BREAK) key and the ability of the
key to override AUTO).

If the AUTO command disables the key and the program is
non-functional, gaining control of the disk requires several steps. To
regain control:

1. Start up the system with another non-AUTOed disk in Drive 0.

2. When TRSDOS Ready appears, place the non-functional disk in
Drive 0.

3. Type AUTO and press (ENTER), and the runaway AUTO command
is removed from the disk.

Use the :drive parameter to place an AUTO command on a drive
other than Drive 0.

Examples
AUTOD BASIC

loads the BASIC program whenever you start up or reset on Drive 0.
AUTO

Turns off the AUTO function currently stored on Drive 0.
AUTO *DO INIT/JCL:1

1-24

executes the DO file on Drive 1 named INIT/JCL whenever you start
up or reset. Notice that the * parameter is used. This means the
operator cannot use (ENTER) to halt the auto command; (BREAK) is also
disabled.

AUTO :1 DEVICE (ENTER
places the AUTO command DEVICE on Drive 1.
AUTO 721
displays the AUTO command on Drive 1.
AUTO =:1 (ENTER
executes the AUTO command on Drive 1.
Error Conditions
To place an AUTO command on a disk, it must be write-enabled.

The system does not check the command line for errors when you
first enter the AUTO command line. Errors are detected when the
command is executed.

Sample Use

Suppose you want the DEVICE library command to execute
automatically when you restart your computer.

Do this by issuing the command:
AUTO DEVICE (ENTER

1-25

Utility
BACKUP [partspec][:source drive][TO][:destination drive]
[(parameters)]

Duplicates (backs up) all or some of the files from source drive to
destination drive.

You can use BACKUP to copy the contents of one disk to another.

If you omit parameters and partspec, TRSDOS performs a
“mirror-image backup” and duplicates all files. If the disk types are
different, TRSDOS duplicates only visible files.

Note: In most cases, you can see which files a BACKUP command
would duplicate by issuing a DIR command of source drive using the
same partspec and parameters as the BACKUP command.

If you do not specify source drive and destination drive, the system
prompts you for them. If the source disk has a Master Password other
than PASSWORD, and you do not state it with the MPW = parameter,
the system prompts for it as well.

If the destination drive is not ready, the message

"“Insert DESTINATION disk <ENTER:" is displayed. Insert
the destination disk and press to continue, or press
to return to TRSDOS Ready.

The destination disk must be formatted before the backup
begins. To format a disk, see the FORMAT command.

The parameters are:

MPW = “password” specifies the source disk’s Master Password

SYS backs up system files as well as the visible files

INV backs up invisible files as well as the visible files

MOD backs up files that have been modified since the last
backup

QUERY = YES questions you about each file before it is backed
up

OLD backs up only those files that already exist on the
destination disk

NEW backs up only those files that do not already exist on the
destination disk

X allows backups with no system disk in Drive 0

DATE="M1/D1/Y1-M2/D2/Y2” backs up files with modify dates
between the two specified dates, inclusive. M7/D1/Y1 must
be before M2/D2/Y2.
="“M1/D1/Y1” backs up files with modify dates equal to the

specified date

1-26

="“-M1/D1/Y1” backs up files with modify dates before or
equal to the specified date

=“M1/D1/Y1-" backs up files with modify dates after or
equal to the specified date

MPW cannot be abbreviated.

When you specify QUERY = YES, the system questions you for each
file before it is copied. Answer by pressing:

to copy the file.
(M) or (ENTER) to bypass the file and move on to the next one.
© to copy the file, turn off the Query function, and

automatically copy all remaining files.
After you type the BACKUP command, TRSDOS automatically

performs one of the three types of backups: “mirror image,” “backup
by class,” or “backup reconstruct.” The difference between the three

is of technical interest and is discussed in “General Information.”

NOTE: A backup by class and backup reconstruct require two disk
drives.

For information on backing up “backup limited” diskettes, see
Appendix M, “Backup Limited Diskettes.”

Backups With the (X) Parameter

When you specify the (X) parameter, you do not have to have a
system disk in Drive @ when you back up a disk. TRSDOS prompts
you to insert the proper disks in the proper drive.

Examples
BACKUP $:0 :1 (SYS,INV) (ENTER

examines all files on the disk in Drive @ and copies all files to Drive 1,
because all files match the $ partspec. The partspec causes a backup
by class.

NOTE: You can use this command to force a backup by class in
situations where a mirror image would normally be performed. For
example, it reduces fragmentation of files on the source disk by
copying them in a more contiguous manner onto a newly formatted
destination disk.

BACKUP =0 :1 (MOD:QUERY=YES sMPW="SECRET") (ENTER

copies all visible files from Drive 0 to Drive 1 that have been modified
(written to) since the last backup. It questions you for each file before
it is copied, showing the file’s mod date and flag. The (MPW =)
parameter states the Master Password, so the system does not
prompt you for it.

1-27

BACKUP $/CMD:9 :1 (ENTER

copies all visible files with the extension /CMD from Drive 0 to Drive
1. If the file already exists on Drive 1 it is overwritten. No other files
on Drive 1 are touched. A backup by class is performed.

BACKUP /4%$%$5:1 :2 (ENTER

backs up all files whose extensions are three characters long and end
with the letter S. The $ wildcard masks the first two characters of the
extension, so extensions such as /BAS, /TSS, and /TRS form a
match. A backup by class is performed.

BACKUP =1 :1 (ENTER

backs up between two disks in Drive 1. You are prompted to switch
the source disk and destination disk at the appropriate times.

The disks used in this type of backup must allow a mirror image
backup, or the backup aborts.

This command and the following command could be used to back up
a data disk.

BACKUP =0 :1 (X) (ENTER

backs up the disk in Drive 0 to the disk in Drive 1. Its main use is to
back up non-system disks, such as data disks, in a two-drive system.

When you use this parameter, you are prompted to insert the proper
disk in Drive 0. You may be prompted to re-insert a system disk into
Drive 0 during certain backups.

When the backup is complete, you are prompted to insert a system
disk back in Drive 0.

BACKUP -/CMD:® =1 (ENTER

backs up all visible files from Drive 0 to Drive 1, EXCEPT those files
that have a /CMD extension. A backup by class is performed.

BACKUP :1 :2 (NEW.QUERY=YES) (ENTER

backs up only those visible files from Drive 1 that do not already exist
on Drive 2. You are prompted before each file is moved.

BACKUP /AEM:3 :2 (DATE="03/@6/BZ-05/1@/82")
ENTER

backs up all visible files with the extension /ASM, whose modify dates
fall on or between the specified dates.

Error Conditions

The destination disk must be formatted before the backup
begins. To format a disk, see the FORMAT command.

1-28

For a backup by class, if the backup is to include system files, the
destination disk must be newly formatted. BACKUP can’t create a
system disk if the destination disk contains data files where system
files would reside. (Existing files may be using certain areas needed
by the system.)

If you are backing up the entire disk, TRSDOS compares the source
and destination disk Disk ID’s to make sure they are identical. If the
master passwords or disk names differ, you see the following
message:

Destination disk ID is different --
NAME=disk name

DATE=mm/dd/ vy
Are vou sure vou want to bacKup to it <Y N7

Press () to abort the BACKUP or (Y) to continue. Press (ENTER).
If the disks’ master passwords differ, the following message appears:

Destination disk ID is different -- NAME=dJdisk
name

DATE=mm/dd/ v
Enter its Master Password or <BreakK* to abort:

Press (BREAK) to abort the BACKUP or enter the password to continue.

If the source and destination disks have a different number of
cylinders, the following message appears:

Cylinder counts differ - AttemPpt mirror-imagde
backuep 7

Answer this question with to attempt a mirror image backup or
with (ND to force a backup reconstruct. Press (ENTER).

If a mirror image backup is not possible, you get the error:
Backup aborted, destination not mirror-imade

This appears if the destination disk is missing a cylinder that contains
information on the source disk. This might be the case if the
destination disk is formatted with fewer cylinders than the source disk,
or if cylinders are locked out on the destination disk when it is
formatted. You can use the FREE library command to check the
destination disk for locked out cylinders.

Atfter all the cylinders that contain data are copied to the destination
disk, BACKUP attempts to remove the modification flags from the files
on the source disk. If the disk is write protected, the following warning
message appears:

Source disk is write protecteds MOD flads not
updated

Backup by class may NOT be done on a single drive.

1-29

General Information

Mirror Image Backup. A mirror image backup is basically a
cylinder-for-cylinder copy from the source to the destination disk.
(Only those cylinders that actually contain data are copied.) When the
backup is complete, the destination disk is an exact copy, or mirror
image, of the source disk.

Backup By Class. A backup by class takes place if you specify a
partspec or any parameter except X or MPW in the command line.

Backup Reconstruct. A backup by class and a backup reconstruct
function identically. The only difference is that while you initiate a
backup by class, the system initiates a backup reconstruct.

On certain TRSDOS application programs, you can only make a
limited number of backups. And, when you make a backup on one of
these programs, the source disk has to be write-enabled during the
backup or the backup fails. See Appendix M/Backup Limited
Diskettes.

Backups With the (X) Parameter. This parameter allows you to back
up data disks of different sizes or capacities on a two-drive system
(using backup reconstruct). One-drive system can perform
mirror-image backups only. When you use the (X) parameter to
backup non-system disks of different sizes or capacities, system
modules 2, 3 and 10 must first be put into memory with the SYSTEM
(SYSRES = number) command. Remember that the (X) parameter is
used only when there is a non-system disk in Drive 0. When you
specify X, BACKUP prompts you to insert the data disk.

Mirror Image Backup. TRSDOS makes a mirror image backup if the
source and destination disks’ size and density are identical, and if you
specify no partspec or parameters (except X or MPW) in the
command line. The number of cylinders doesn’t need to be identical
as long as the destination disk has at least as many cylinders as the
source disk.

The date on the destination disk shown with the DIR or FREE library
commands is changed to the current system date.

After the backup, the destination disk has its directory on the same
track as the source disk regardless of where it was before the
backup. The information on the destination disk is updated to reflect
its true cylinder count and available free space.

Backup By Class. This type of backup does a file-for-file copy from
the source to the destination disk. Files that are fragmented (spread
over more than one extent) on the source disk are consolidated (if
possible) on the destination disk.

Unlike a mirror image backup, files that exist on the destination disk
but are not on the source disk are not touched in the backup. When

1-30

the backup is complete, the destination disk contains all files moved
from the source disk plus any other files that existed on the
destination disk before the backup began.

The destination Disk ID is not changed by the backup.

When the file SYS0/SYS is included in a backup by class, the
destination disk is configured in the following manner:

1. The state of the SYSGEN (on or off) is changed to match that of
the source disk.

2. The initial date and time prompts (on or off) on power-up are set to
match those of the source disk.

3. The default drive configurations match those of the source disk.

Backup Reconstruct. The system performs a backup reconstruct
when the size or the density differs between the source and
destination disks.

DIR/SYS and BOOT/SYS are not moved to the destination disk in this
type of backup.

When you are performing a backup by class or backup reconstruct,
TRSDOS may display a “Disk is full — Insert new formatted
destination disk, <ENTER>" warning message. This is not an error
message. TRSDOS is warning you that the destination disk is full and
all of the files on the source disk are not on the destination disk.
Remove the destination disk and insert a new formatted disk. Press

(ENTER).

If you want all of the files to be moved, then you must use the
command BACKUP :5 :2 (SYS,INV). This moves visible, invisible, and
system files to the destination disk.

When you are performing a backup by class or backup reconstruct,
TRSDOS may display a “Disk is full — Insert new formatted
destination disk, (ENTER)” warning message. This is not an error
message. TRSDOS is warning you that the destination disk is full and
all of the files on the source disk are not on the destination disk.
Remove the destination disk and insert a new formatted disk. Press
(ENTER).

TRSDOS is most likely to display this message when you are backing
up a hard disk or when the destination disk is partially full before the
backup. If a portion of a file is on the destination disk when TRSDOS
realizes that the disk is full, TRSDOS removes that portion of the file.
A file is never divided between two diskettes. TRSDOS also indicates
which files are on which destination disk.

Hard disk users should note that system files are stored in specific
places in the directory. If you use BACKUP to move the visible files
and then repeat the command with the SYS option, the backup aborts

1-31

if the directory positions required for the system files are already in
use. If this happens, you can use the PURGE command to delete the
files that were moved to the disk, and then give the BACKUP
command with the SYS option.

Sample Use

Suppose you have a payroll disk where all of the new employees
have a file with an extension of /NEW and all of the old employees
have a file with an extension of /OLD.

Now suppose you want to have two separate disks: one with old
employee files and one with new employee files. You could issue the
command:

BACKUP /NEW:@ :1 (ENTER

to move all of the files of new employees from the master disk in
Drive 0 to another disk in Drive 1.

1-32

BOOT

Command
BOOT [keys]

Resets (boots) TRSDOS by returning it to its original start-up
condition.

You can use BOOT to return your computer to the TRSDOS copyright
and startup message.

The keys are:
allows no sysgened configuration to take place.
allows no breakable AUTO commands to occur.
enters the system debug. No sysgened configuration is
loaded.

Note: When you use one or more of these keys, you must press
and hold them down when the screen is erased and keep them
down until the TRSDOS Ready message or the DEBUG display
appears. If you are prompted for the date, you must hold down
the keys as soon as you type the date and press (ENTER. If you
don’t press the keys in time, simply reset and hold the keys
down as soon as the screen clears.

On the Model 4P, (ENTER) has a special meaning during the booting
procedure. If you use as one of the keys with the BOOT
command, you must press after typing BOOT, release
(ENTER), and press (ENTER) again to allow no breakable AUTO
commands to occur.

If the diskette in Drive 0 contains a CONFIG/SYS file, TRSDOS
displays the message #* SYSGEN = in the lower left corner of the
display while the CONFIG/SYS file is loading.

Note: CONFIG/SYS files that were created using previous versions of
TRSDOS, Version 6.0 or 6.1, cannot be used with TRSDOS Version
6.2. You cannot copy a configuration file to a disk. You must use
SYSGEN to create a new CONFIG/SYS file for Version 6.2.

BOOT loads the TRSDOS system in floppy Drive 0 back into the
computer. It returns the computer back to its normal power-up
configuration as if the system had been turned off and then turned on
again.

Examples

Remember to hold down the key after you press until you see
TRSDOS Ready or the debug display.

BOOT (ENTER)

resets the system.

1-33

BOOT (ENTER) (CLEAR

returns the system to its original start-up condition and ignores any
sysgened configuration.

BOODT (ENTER) (ENTER

returns the system to its original start-up condition and ignores any
breakable AUTO commands.

BOOT (ENTER) (D)

returns the system to its original start-up condition and enters the
system debug. No sysgened configuration is loaded, and any AUTOed
command is not executed. Note: If the AUTOed command is
unbreakable, (D) is ignored.

1-34

BUILD

Command
BUILD filespec [(parameters)]

Lets you enter data (such as commands) and save it on disk as
filespec.

If you omit an extension to filespec, TRSDOS assumes the extension
/JCL. If you include only the slash for extension, TRSDOS does not
assume an extension.

You can use BUILD to make a file on a disk.
The parameters are:

HEX accepts data in hexadecimal format only.
APPEND appends the BUILD data to the end of filespec.

Although you can build any type of data file with this command, it is
mainly for creating files to be executed with the DO command,
KSM/FLT, or the PATCH utility.

The HEX parameter lets you input data in hexadecimal form (see
Appendix C for a listing of hexadecimal characters). You can use hex
to generate control characters and graphics symbols which are not
available from the keyboard.

The APPEND parameter lets you add data to the end of an existing
file.

Some programs (such as SCRIPSIT) place their own marker at the
end of a file. If this marker is in the file, you cannot append BUILD
data to it unless you:

e Use the BUILD command to create a new file containing the
information you wish to append.

@ Use the APPEND library command with the STRIP parameter
to properly append the new information to the existing file.
Building a File

When you enter the BUILD command with a non-existing filespec,
BUILD creates the file and then allows you to insert lines.

You can enter a command line of up to 255 characters. JCL files are
limited to 79 characters per line. To end a line, press (ENTER).

To end the file, press (CONTRODSHIFD(@) at the beginning of a
new line. The system returns you to TRSDOS Ready.

1-35

Examples
BUILD DISPLAY:Z (ENTER

creates a new file named DISPLAY/JCL on Drive 2. TRSDOS allows
you to insert lines. Type:

DEVICE
FREE :@
FREE
(CONTRODGSHIFD(@)

The first three lines insert the DEVICE, and FREE :0 and FREE

commands into the “DISPLAY” file. Pressing (CONTROL(SHIFT) (@)
tells TRSDOS that you are finished entering command lines. The
system returns to TRSDOS Ready.

Now, whenever you type:
DO DISPLAY (ENTER

TRSDOS executes the file by displaying the device table, the free
space map of Drive 0, and the free space information for all enabled
drives.

BUILD MYKEYS/KSM (ENTER

builds MYKEYS on the first available drive. Since the /KSM extension
was used, a KSM file is built. See the KSM/FLT filter in Appendix | for
more information.

BUILD SPECIAL/:¢ (ENTER

builds SPECIAL on Drive 0. Adding the “/” allows SPECIAL to be built
without an extension.

BUILD MYJOBS/JCL (APPEND) (ENTER

searches all available drives for MYJOBS/JCL (until it is found) and
adds the information from this build to the end of the file. If
MYJOBS/JCL is not found, the file is built on the first available drive.

BUILD MYPROGA/FIX:@ (ENTER

builds MYPROGA/FIX, which is to be used with PATCH. See the
PATCH utility for more information.

BUILD DISPLAY/BLD (HEX) (ENTER

builds a file on the first available drive, allowing data to be entered in
hexadecimal format. Information is entered into this file as
hexadecimal bytes (with no spaces or other delimiters between them).

The HEX parameter allows you to enter characters not directly
available from the keyboard, such as control, printer control, and
graphics characters. You can enter any one-byte character value.

1-36

A hex build allows 127 hex byte representations (254 characters) per
logical line. Logical lines may continue on more than one physical line
as long as a “0D” logical line terminator does not appear. Also, more
than one logical line can appear on one physical line.

To create a character string containing graphics characters, type:
818A90A10D (ENTER)

This line contains the hexadecimal bytes 81, 8A, 90, and A1. Notice
that the byte values are packed together. “0D” ends a logical line,
and ends a physical line.

If a non-hex digit is entered, the error message “Bad hex digit
encountered” is displayed and the build aborts.

Error Conditions

If you omit the APPEND parameter and specify a filespec that already
exists, TRSDOS displays a “File already exists” error message.

Sample Use

Suppose you want to build a file to be used with the PATCH
command. Issue the command:

BUILD PROG/FIX (ENTER
and enter the patch lines.

1-37

CAT

Command
CAT [-|[partspec][:][drive1][-1[:][drive2][(parameters)]

Displays the directory for one or more drives.

The CAT command displays the names of the files on one or a range
of diskettes.

If you specify partspec, CAT displays only filenames that match
partspec. If you specify partspec, preceded by a hyphen (-), CAT
displays all filenames that do not match partspec. If you include a
drive number with partspec, you must include the colon.

Colons are optional in the syntax of the CAT command except when:
@ You specify partspec with a drive number.

@ You include a colon for drive1, you must omit the colon for
drive2.

If you omit the drive numbers, CAT displays the filenames on all
enabled drives. You can include the hyphen to specify a range of
drive numbers. If you specify:

drive1-drive2 displays the directory for drive1 through drive2.

drivel- displays the directory for all drive numbers equal
to or greater than drive1.

-drive2 displays the directory for Drive 0 through drive2.

Specifying parameters allows you to select which filenames CAT prints
on the screen or line printer. You must enclose parameters in
parentheses. If you include more than one parameter, separate each
with a comma. You cannot abbreviate the SORT and SYS parameters.
The parameters are:

ALL displays all directory information for the specified
diskette(s). If the directory information is longer than 24
lines and you do not specify the NON parameter, CAT
displays 24 lines of information and waits for you to
press a key before displaying the next 24 lines.

INV displays all filenames, visible and invisible.

MOD displays filenames modified since the last backup.

NON enables non-stop display mode. When the directory
information fills a screen, NON scrolls lines off the top
of the screen.

PRT the directory display prints on the printer and the
screen. If you include PRT, CAT assumes the NON
parameter.

SYS displays system and visible filenames.

1-38

DATE = “date1-date2” displays the filenames that have
been modified on or after date? and before or on

date2.

= “date” displays the filenames that were modified
on date.

= “date-" displays the filenames modified on or
after date.

="“-date” displays the filenames that were
modified on or before date.
Dates must be in the format: MM/DD/YY.
SORT=NO does not sort the filenames in alphabetical order.
CAT assumes SORT =YES.

TPP9 9 9%

Drive :@® TRSDOSGEX 4@ Cv1, DDEN, Free = 7.50K / 180,00K+ Date 10-Feb-Bd

CLICK/FLT P cCoM/DVUR P COMM/CMD P CONV/CMD P

DOS/HLP FLOPPY/DCT P FORMS/FLT P HELP/CMD = 0
KEM/FLT P LOG/CMD P MAILLIST MEMDISK/DCT P
REPAIR/CMD P TAPE1@@/CMD P

Drive Number.
Disk Name.
Number of cylinders on the disk.
Density of the disk.
DDEN = double density
SDEN = single density
Hard = hard disk
Free space — The amount of unused space on the disk.
Total free space — The amount of space (used and unused) on
the disk.
Creation date — The date of creation.
Disk filenames — The filenames are sorted alphabetically unless
you specify SORT = NO.

For a detailed explanation of each line with the ALL option, see the
DIR command.

el AN

oN oo

Examples
CAT

displays the filenames of all visible files on all enabled drives.
CAT :1-

displays the visible filenames on enabled drives that are equal to or
greater than one.

CAT (INV,5YS) (ENTER

displays all filenames (visible, invisible, and system) on all enabled
drives.

1-39

CAT (ALL) (ENTER

displays the ALL directory information for enabled drives. If the
information is longer than 24 lines, CAT displays 24 lines of the
directory and waits for you to press a key before displaying the next
24 lines. See the DIR command for a complete description of a
directory with the ALL parameter.

CAT @ (PRTMOD) (ENTER

prints and displays the visible filenames on Drive 0 that have been
modified since the last backup. When you specify the PRT parameter,
CAT assumes the NON parameter and displays the filenames on the
screen without pausing. You can press SHIFT) and (@) to pause the
display. Press any key to continue.

CAT 1 (DATE="04/16/84-")

displays the visible filenames on Drive 1 modified on or after April 16,
1984.

CAT -1 (DATE="-07/20/84") (ENIER

displays the visible filenames on Drives 0 and 1 modified before July
20, 1984.

CAT /CMD:@ (ENTER

displays the visible filenames on Drive 0 that have the extension
/CMD.

CAT -/CHMD:@ (ENTER

displays the visible filenames on Drive 0 that do not have the
extension /CMD.

Error Conditions

If you specify a drive number that does not exist or that is not
enabled, CAT displays an “lllegal drive number” error message.

If you specify a range of drives and include a colon with each, CAT
assumes that the second colon is a drive number and displays an

“lllegal drive number” error message. Try the command again and

only include the colon for the first drive number.

If you specify an enabled drive number that does not contain a
formatted disk, CAT dislays a “[No Disk]” message.

1-40

CLS

Command
CLS

Clears the screen, positions the cursor in the upper left-hand corner of
the display, and sets the display to 8@-column mode.

You may also clear the screen by pressing (SHIFT) and (CLEAR) at
the same time. CLS is useful in applications, such as JCL, where you
cannot press keys.

1-41

Utility
COMM devspec [(parameters)]

Lets two computers communicate via a device, usually the RS-232
communications line.

You can use COMM to let your computer talk with another computer.
COMM lets your computer:

® be used as a terminal in communicating with another
computer.

@ transfer files to and from another computer.

® spool output from the other computer to your printer.

Using COMM, you can access:

@ Bulletin Board Systems

@ News and Information Systems
® Timesharing Systems

@ Electronic Mail Services

COMM can also communicate with systems that support XON/XOFF
(Proceed/Pause) protocol. This is a protocol that uses two control
codes named Device Control 1 and Device Control 3. (The Device
Control codes are discussed in the command
section.)

devspec is usually *CL, the RS-232C communications line.

Note: Before you can use *CL, you have to SET it to its driver
program COM/DVR. See Appendix .

The parameters are:

XLATES = X'aabb’ translates a character being sent.
XLATER=X'aabb’ translates a character being received.
XON=X’cc’ changes the XON code.

XOFF = X’cc’ changes the XOFF code.

aa is the character to be translated.
bb is the character aa is translated into.
cc is the new value of XON or XOFF.

Enter hexadecimal values in the format X’nnnn'.

NULL = OFF prevents any nulls (ASCII value 0) from being
received.

XLATES and XLATER can be abbreviated to XS and XR.

XLATES and XLATER let you translate a character that you send and
a character that you receive from another computer. (Only one
character can be translated in each direction at any one time.)

1-42

Error Conditions

If there is not enough memory available to establish the device buffers
for COMM, TRSDOS displays an “Insufficient memory to establish
buffers” error message. Remove some modules from memory that
you are not using or press RESET to release memory.

If you omit devspec or specify a device other than the device
specified with SET statement, TRSDOS displays a “Comm Line driver
not specified” error message.

Example

Suppose you are using COMM as a terminal to communicate with
another computer, and you want to print a right bracket (]). It
appears that you can't because there is no key on your keyboard that
produces this character.

Use the XLATES parameter to produce a (]) by entering another
character from the keyboard. Type:

KLATES=X 025D

Now when you press (hexadecimal 02), your computer
sends the code for a right bracket (hexadecimal 5D) to the other
computer. Since the Model 4 can display a right bracket when it
receives a hex 5D, there is no need to use XLATER to translate the
received character.

Characters that you receive from another computer can be translated
to a different symbol using XLATER. Use the same method that we
used for XLATES.

See Appendix C for a list of characters and their hex values.

The Function Keys
The Function Keys are used to:
1. Direct the flow of data (text or software) from device to device.

2. Enable and disable certain functions of COMM, including
XON/XOFF and full/half duplex operation.

The Function Keys are divided into two groups: (1) the Application
keys and (2) the Action keys.

The Application and Action keys are achieved by holding down all of
the keys in the sequence, such as (CLEAR)(6) (hold down (CLEAR
and then press (6).

1-43

The Application Keys

The Function Keys (CLEARI(1) through (CLEAR)(6) designate what
device an action applies to.

Function Key Device Abbreviation
Keyboard Device (K1)
CLEAR Display Device (*DO)
CLEAR Printer Device (*PR)
CLEAR Communications Line Device (*CL)
CLEAR “Data Send” Device (*FS)
CLEAR “Data Receive” Device (*FR)

Action Keys

The remaining Function Keys perform an action. Some action keys
require you to specify an application key (CLEAR(1) through
(CLEAR)(6)) before you can perform the action.

CLEAR

Causes the contents of the “Data Received” (+*FR) area in memory to
be written to disk. This is called “Dump-To-Disk” or DTD. DTD may be
turned ON before or after a file is received. (You must turn DTD ON if
a file will exceed the size of the *FR memory area.)

When you start COMM, DTD is ON. When you perform an *FR
RESET ((CLEAR)(6) (CLEAR(@)), DTD is turned OFF. To turn it ON
again, press followed by CLEAR)(:)

If you are writing data to floppy disks and the RS-232 port is running
at a speed higher than 300 baud, you have to wait until you receive
an entire file before turning DTD ON.

CLEAR

Displays the MENU of Function Keys on the display. You can use this
command any time.

The display goes from left to right. This is not intended to be a
complete menu, but a built-in “quick reference” card.

The screen display is altered to display the menu. Any data you
receive while the menu is displayed is not lost because COMM saves
the data in a special area of memory. This data appears on the
screen after the menu is displayed.

1-44

:

* # 13
_ DUPLX ECHO ECOLF ACCLF REWINDPEOF DCC CLS

:1: =7z == Y= =5= == =7= =@=
%K I *D0 *PR #CL *FS *FR DTD 777
*_ *k_ *
47K

FR-SPEC: HECTOR/HEC:® MEMORY:

1. The devices and functions. (The asterisks above and below the
function keys indicate that the function is active.)

The amount of available memory.

Asterisks for the shifted function keys.

Asterisks for the unshifted functions keys.

Two asterisks denote a device capable of both input and output.
One asterisk denotes a device capable of either input or output.
If HANDSHAKE is active, the auto XOFF character selected is
shown in hex.

8. Displayed filespec of any *FS or *FR filespec.

CLEAR

Specifies what file to use when you send or receive data. After you
specify the file, your computer opens it. If you specify a file that does
not exist, COMM creates it.

To specify the name of a receiving file, press (CLEAR followed by
CLEAR and answer the following prompt:

File Name:

- 0
[
TR~
]
=
o
X
- =z
)
w
I
m
=
—

O

Noohkown

COMM opens the file but does not set aside an area of memory to
receive the data, so any incoming data is ignored.

To save incoming data, enter the command followed by
(CLEAR)(:). Now, data received is placed in the “Data Received”
(*FR) area of memory, and the data is eventually placed in the file
you specified. (See (CLEAR)(:) for more information on activating
devices.)

If a file is already open, the system aborts your (CLEAR command
and prints the warning message:

File Already Oren

This warning prevents you from opening another file before closing
this one. This protection also applies to files associated with the “Data
Send” (xFS) area of memory.

1-45

CLEAR

Closes either a receive file or a send file. You must close a receive
file so its directory can be updated, and so you can receive another
file. If you reset a device, its buffer is cleared.

You must turn OFF the #FR or *FS device before you can close the
associated file. (See (CLEARI(=) for information on turning OFF
devices.)

CLEAR)(:)

Turns ON a device. This is the second command of a two-command
sequence.

For example, if you want to turn ON the printer, first press (CLEAR)(3)
to indicate that you want to do something with the printer, and then
press (CLEAR)(:) to indicate that you want to turn it ON. Press
(CLEAR)(3) followed by (CLEAR)((=) to turn the printer OFF.

(CLEAR(=)

Turns OFF a device. This is the second command of a two-command
sequence.

For example, if you want to turn the printer OFF, first press
(CLEAR(3) to indicate that you want to do something with the printer,
and then press (CLEAR)(=) to indicate that you want to turn it OFF.
Press (CLEAR)(3) followed by (CLEAR)(:) to turn the printer ON.

CLEAR)(SHIFT

This is the DUPLEX control, which allows you to select Full-Duplex or
Half-Duplex.

Full-Duplex and Half-Duplex indicate how data is sent from one
computer to another on an RS-232C line.

@ Half-Duplex is used with a computer that cannot read data
while it is sending it or send data while it is receiving it.

A (CLEARSHIFD(D) followed by a (CLEAR)(:) indicates

Half-Duplex.

e Full-Duplex is used with a computer that can read data
while it is sending it or send data while it is receiving it.

A (CLEARSHIFD() followed by a (CLEAR(=) indicates
Full-Duplex operation.

When you start COMM, it is set to Full-Duplex (Duplex off).

Some computers and terminals combine Duplex and Echo functions,
so you should know something about the computer or terminal you
are communicating with.

1-46

CLEAR)SHIFD()

Controls character “Echo”ing. Press (CLEARSHIFTD() followed by
CLEAR to turn Echo ON.

You should turn Echo ON if you are communicating with a computer
or terminal that is operating in full-duplex, but does not display a copy
of characters it is transmitting to you (called Local Copy).

Turning Echo ON causes your computer to transmit each character it
receives back to the computer that sent it. This lets the person
operating the other computer see what is being transmitted.

Caution: If both ends are set for Echo ON, then the first character
sent is echoed back and forth indefinitely — or until one end turns
Echo OFF.

CLEAR)(SHIFT

This command controls Echoing linefeeds. When enabled, any
carriage return your computer receives causes a linefeed character to
be transmitted back to the other computer.

This command is useful since there are a large number of terminals
and computers that treat a carriage return (ASCII 13) and linefeed
(ASCII 10) as separate functions.

When you are communicating with another TRS-80 computer, you
can turn OFF this function by pressing (CLEAR)SHIFT followed by
CLEAR(=).

CLEARSHIFTN($)

Controls the ability of your computer to accept a linefeed. COMM
usually ignores the first linefeed after a carriage return, since most
computers send both a carriage return and a linefeed.

In most cases, this command is not necessary on TRS-80’s where an
ENTER) is treated as both a carriage return and linefeed.

CLEAR)(SHIFT

Positions to the start of an *FR or #FS file, so you can start again. For
example, if you are receiving a file and it aborts with an error, you can
start over by pressing followed by (CLEAR)SHIFD(%).

Then you can attempt to receive the file again.

CLEAR)(SHIFT

Appends new data to the end of a file. This command applies to the
“Data Received” (*FR) area of memory only. If you open an existing
file and then press (CLEAR)(6) followed by (CLEAR(SHIFD(&), you

can append new data to the end of the file.

1-47

CLEAR)SHIFD(-)

Displays control characters that are being received or sent. You can
use this command to detect if you are receiving unwanted control
characters. If you are receiving unwanted control characters, you can
use the XLATER to translate them.

CLEARSHIFD(O

Erases the contents of the screen and places the cursor in the upper
left corner. No data is transmitted.

CLEARSHIFD())

When followed by an ON command (CLEAR)(:)), your computer uses
all 8 bits of a character it receives. Normally, bit 8 is either not present
or invalid, so COMM removes it from each character it receives.

Do not turn this option ON unless the RS-232C word length is set to
8. You can use the SETCOM library command to set the word length
before you enter COMM.

CLEAR)(SHIFT
Allows you to enter a TRSDOS library command from COMM.
For example, when you type:

DEVICE

the device table is displayed on your screen. The message
“Command complete” is displayed below the device table.

NOTE: If the specified library command attempts to change HIGHS,
the command aborts and TRSDOS returns you to COMM.

(CLEAR)(SHIFT
This command controls the handshaking on the data line.

Handshaking is the agreed-upon method that two communicating
computers use to control the flow of data between them. If this option
is turned ON, COMM responds to the following codes when your
computer receives them from the communications line:

Symbol Value Description

DC1 17 X171 — Resume transmission (XON or
Proceed character)

DC2 18 X112 — Turns the *FR device ON

DCS3 19 X113 — Pause transmission (XOFF or Pause
character)

DC4 20 X114 — Turns the *FR device OFF

1-48

NOTE: You an use the XON and XOFF parameters when entering
COMM to change the handshaking characters that COMM recognizes.
These are the default values that are part of the ASCII standard.

The XON and XOFF characters control the transmission of data. If
handshaking is ON, when the transmitting device receives an XON
character, the device starts transmitting. It continues transmission until
it receives an XOFF or Pause character.

If handshaking is ON, when COMM receives an XOFF character,
transmission stops. COMM continues to receive characters, but does
not transmit until it receives an XON character.

To resume transmission after COMM receives an XOFF character,
execute an *CL ON command. To enter an *CL ON command, type

(CLEAR)(4) (CLEAR) (:).

You can specify a pause character to force COMM to stop sending
data when you transmit that charcter. To specify a pause character,
type (CLEAR) and the character you want to pause on. Do
not include the (CLEAR)(:) after the pause character.

For example, you may want to specify as the pause

character so that line-at-a-time transmission occurs. COMM pauses at
the end of each line and waits until the receiving computer sends an
XON character.

The *FR device ON and *FR device OFF control the recording
device. They tell the recording device (*FR) to start and stop
recording received data. You must create an *FR file with (CLEAR)(6)
and (CLEAR)(9) before you use these controls.

CLEARSHIFD(=)
Exits to TRSDOS Ready. It does not require any ON or OFF code.

Before COMM stops running, it checks the “Data Received” device
(*FR) to see if any open files exist. If there is an open file, COMM
closes it before it exits to TRSDOS. This feature prevents you from
having unclosed files in your system.

Quick Reference Label

If you are a beginning COMM user, you may find it helpful to make a
label containing each key’s function and place the labels directly
above the keyboard. Label the keys as follows:

Key Unshifted SHIFTed

1 *Kl Duplex

2 *DO Echo

3 *PR Echo-Linefeed

4 *CL Accept-Linefeed
5 *FS Rewind File

1-49

6 *FR Position @ EOF
7 DTD DCC

8 Menu Clear Screen

9 1D 8-bit mode

0 Reset Command

: On Handshaking

- Off Exit

Logging-On To CompuServe (Available only in U.S.A.)

You can use your Model 4 and COMM to log-on to CompuServe. To
log on to CompuServe, you must first buy a Universal Sign-Up Kit
(Radio Shack Cat. No. 26-2224). Next, follow these steps:

1. First, use the SET command to SET *CL to COM/DVR (see
Appendix I). Then issue the command:

SETCOM (WORD=8,PARITY=0FF,S5TOP=1) (ENTER
2. Type:
comM «CL (ENTER

3. Now you need to dial CompuServe’s number that comes in the
Universal Sign-Up Kit. Depending on which modem you are using,
you either dial the number on a phone or you must enter the
commands that cause the modem to dial the number for you. See
your modem manual for the correct procedure.

4. After the number is dialed, wait for a “carrier tone” that
CompuServe sends to tell you that you are connected.

5. Now press (CONTROL)(C) to send a hexadecimal value of 03 to
CompuServe.

6. CompuServe prompts you on your video display with:

User ID:
Passwords:

Answer each prompt with the numbers supplied in the Universal
Sign-Up Kit and (ENTER).

7. You are now logged-on to CompuServe.

COMMunicating with Bulletin Board Systems

A Bulletin Board System (BBS) is typically a small computer used by
individuals, schools, or companies that provides a communication link
between its users.

With some TRS-80 Bulletin Board Systems, you can receive graphics
characters. For you to be able to accept these graphics, the
COM/DVR driver has to be initialized at 8 bits per word (see the
SETCOM library command) and you have to use 8-bit mode in
COMM ((CLEARISHIFD()) followed by CLEAR)(:)).

1-50

COMMunicating with Other Computers

This section shows you how to use COMM to communicate with other
computers. The first example describes how a TRS-80 communicates
with a mainframe computer. The second example describes how two
TRS-80’s can communicate.

COMMunicating with a Mainframe

When a TRS-80 communicates with a mainframe computer, in most
cases it is not necessary to change the default device or function
settings when you enter COMM. Most mainframes operate as the host
computer while you operate as a terminal, and the mainframe
provides echo functions for you. You must be sure to specify the
RS-232C parameters when setting up the COM/DVR driver to match
those expected by the mainframe.

To transfer a file from a mainframe to your TRS-80 computer, use the
following procedure:

1. Type in the command which causes the mainframe to list the file,
but do not press (ENTER).

2. Specify your receive file by pressing (CLEARI(6) followed by
CLEAR)(9). Type in the filename in response to the prompt.

3. Press followed by (CLEAR(:) to open the receive area
of memory. If the file you wish to receive is larger than your
available area of memory, you should then press
followed by (CLEAR):). This causes the file to be written to the
disk as it is being received.

4. Press (ENTER) to start the file listing.

5. When the listing is complete, press (CLEAR)(6) followed by
(CLEAR)(=) to turn OFF the *FR and if you have not already done
so, press (CLEAR followed by (CLEAR)(:) to write the file to
disk.

6. When the disk write is complete, type followed by
to turn off DTD and to close the receive file.

To transfer a file from your TRS-80 computer to a mainframe, use the
following procedure:

1. Designate the file that you want to send by pressing (CLEAR(S)
followed by (CLEAR)(8) and entering the name of the file in
response to the prompt.

2. Turn on the handshake mode by pressing (CLEAR)(SHIFT
followed by (assuming that the line terminating character

in your file is (ENTER)).

1-51

If the mainframe does not support handshaking, first try to transfer
the file without the handshake mode. If this doesn’'t work, contact
the mainframe’s computer site and find out how to send files to
that mainframe.

3. Open the file at the host end and ready it for receiving information
by whatever command process your host requires.

4. Turn on your file send by pressing (CLEAR)(5) followed by
CLEAR)(:).

Note that one line of your file is transmitted and then your machine
pauses. Once the host sends you the XON, the next line of the file
is automatically transmitted.

If you are operating in half-duplex, you may see the entire file
displayed without any pauses. The file is being read from your disk
and put in an area of memory where it waits to be transmitted.

5. When the transmission is complete, turn off the handshake mode
by pressing (CLEARSHIFTD() followed by (CLEAR)(=).

6. Close the file at the host end by whatever command process the
host accepts. You may then close your file send by pressing
CLEAR)(5) followed by (CLEAR)(@) (which turns off the *FS and
closes the file).

If you want to force the transmission to resume after a line is
ended, you may turn the *CL back on by pressing (CLEAR
followed by (CLEAR)(:).

COMMunicating Between Two TRS-80's

When you use COMM to communicate between two TRS-80’s, one
end has to run on half-duplex (CLEAR)SHIFD(1) followed by
(CLEAR(:)) and echo ((CLEARSHIFD() followed by CLEAR(:)). If
files are to be sent and received, the RECEIVING end should run
half-duplex and echo.

To transfer files between two TRS-80'’s, use one of the following two
methods. Use Method A if you are operating above 300 baud. Use
Method B if you are operating at 300 baud.

Method A

1. The sending end presses (CLEAR followed by (CLEAR and
enters the name of the file to be sent.

2. The receiving end presses (CLEAR followed by (CLEAR(9) and
enters in the name of the file to be received. Turn the dump-to-disk

(DTD) OFF by pressing (CLEAR followed by (CLEAR)(=). This
stores the file in memory as it is received.

1-52

If the sending end supports XON/XOFF handshaking, then you
should turn HANDSHAKE ON by pressing
followed by (CLEAR)(:).

3. When both ends are ready, the receiving end presses
followed by (CLEAR)(:), after which the sending end presses
(CLEAR)(5) followed by (CLEAR)(:).

If your free area of memory decreases to less than 2K during
receipt of the file, a warning message is issued and an XOFF is
automatically sent to the sending end.

Transmission from the sender should cease. Once it does, dump
the receive area of memory to disk by turning on DTD by pressing
(CLEAR)(7) followed by (CLEAR)(:).

You can observe the increase in available memory space by
displaying a menu as the area of memory is written to disk. Once
ample space is available, turn off the DTD by pressing
followed by (CLEAR(=).

You can then manually restart the sender’s file by transmitting an
XON from your keyboard with (CONTROL)(Q).

4. The receiving end presses (CLEAR(6) followed by (CLEAR(=)
when it has received all of the file. The last receive area of
memory should be dumped to disk by turning on DTD ((CLEAR(7)
followed by (CLEAR)(:)).

The sending end presses (CLEAR)(5) followed by (CLEAR)(-) and
then (CLEAR)(B) followed by (CLEAR)(0).

5. When the receiving end has finished writing the information to the
disk, close the file by resetting the *FR ((CLEAR)(6) followed by a
(CLEAR)(@)). This performs an *FR OFF and a DTD OFF, and it
closes the file just received.

Method B

1. The sending end presses (CLEAR followed by (CLEAR and
enters in the name of the file to be sent.

2. The receiving end presses (CLEAR)(6) followed by (CLEAR and
enters in the name of the file to be received.

The dump-to-disk (DTD) must be turned ON by pressing
followed by (CLEAR)(:) . Check to see if it is already
ON by displaying a menu ((CLEAR(8)) and noting if an asterisk is
displayed beneath its key.

3. When both ends are ready, the receiving end presses (CLEAR
followed by (CLEAR)(:). The sending end then presses CLEARI(5)
followed by (CLEAR)(:) to turn ON the receive and send files.

1-53

4. When the receiving end has received all of the file and it is written
to the disk, close the file by resetting the *FR. Press
followed by (CLEAR)(@). This performs an FR OFF and a DTD
OFF, and it closes the file just received. The sending end then
presses (CLEAR(5) followed by (CLEAR)(@).

Technical Information

This section describes some of the more technical aspects of COMM
operation. This information allows you to predict how COMM will
perform during higher speed |/O operations.

Main memory usage

COMM uses all available memory below the top of memory mark
(HIGHS) for dynamic buffering of device I/0. You can see or set this
value with the MEMORY command.

The amount of buffer space devoted to each logical device
dynamically expands and shrinks according to how quickly data is
sent to a device and how fast the device can process the data it
receives. Each buffer is essentially a variable length First-In, First-Out
(FIFO) storage compartment.

The amount of free space available for the buffers is noted in the
bottom line of the menu display. When this free space shrinks to less
than 2K (2048 characters), a warning message is displayed and an
XOFF is automatically sent to the communications line (*CL).

This function is useful when you are receiving a file from a system
that supports handshaking. (The command
describes the supported handshaking.)

Break commands

COMM generates a modem break (long space) when you press the
key. A modem break is used on many mainframe systems to
indicate you want to abort a function that is occurring at the other
computer.

However, for small computers, detecting a modem break is more
difficult, so you have to select a control character to be treated as a
“break” command.

To transmit a break character to another computer, press
CONTROL)(C) if the other computer is a Model Il, 12 or 16. Press
CONTROL)(A) if the other computer is a Model | or Il1.

1-54

Escape code sequences

Some systems transmit control codes to indicate that a cursor
movement or action is to be performed. Many systems have adapted
a two-character sequence, which does not perform the intended
function in COMM.

If you are working with one of these systems, you should contact the
operators of the other system and ask if there is a way to prevent
these control sequences from being sent to your system.

Some systems support several different types of terminals and
computers, so with a little experimenting, you should be able to find a
terminal setting that suits your needs.

Receiving large files from another system

If you receive files that won't fit into memory in one piece, you may
have to use handshaking to reduce the possibility of losing data.

1-55

CONV (CONV/C!

Utility
CONV [partspec]:source drive [:destination drive][(parameters)]

Allows you to move (convert) data files from a TRSDOS 1.3 (Model
Il) diskette onto a TRSDOS Version 6 formatted diskette.

Use this command with data or BASIC ASCII files. TRSDOS 1.3
application programs will not work on TRSDOS Version 6. To use
TRSDOS 1.3 programs on the Model 4, start up your system with a
TRSDOS 1.3 system diskette in Drive 0.

The parameters are:

VIS moves visible files

INV moves invisible files

SYS moves system files

"NEW moves only those files that do not already exist on the
destination disk.

OLD moves only those files that already exist on the destination
disk.

QUERY = NO specifies that you are not to be questioned before
each file is moved to the destination disk.

DIR displays a short directory of a TRSDOS 1.3 disk. If you do
not specify destination drive, a short directory is displayed.
If you specify DIR, no files are moved.

If you don't specify VIS, INV, or SYS, TRSDOS moves all three types
of files.

The TRSDOS 1.3 disk must be a non-limited backup disk. Some
programs such as SCRIPSIT and VISICALC are limited backup disks.

If you have data files on a TRSDOS 1.3 limited backup disk, you must
COPY these files (under TRSDOS 1.3) to a non-limited backup disk
before you can CONVert them.

The source drive cannot be Drive 0.

When you specify a partspec, only those files matching the partspec
are moved to the destination disk.

When you do not specify the QUERY =NO parameter, you are
questioned before each file is moved. Answer the prompt by pressing:

to copy to file.
or (ENTER to bypass the file and show the next one.

Caution: Do Not move BASIC/CMD or any other existing TRSDOS
system files.

1-56

Error Conditions

If you attempt to copy certain limited Model lil TRSDOS 1.3 diskettes
with the CONV utility, TRSDOS displays a “Cannot CONV Protected
Diskette” error message. See Appendix M/Backup Limited Diskettes

for additional information.

Examples
CONV :2 :1 (ENTER

moves all files from Drive 2 onto Drive 1. You are questioned before
each file is moved. If the file already exists in Drive 1, you are asked
again before it is copied.

CONY 21 0 (VIS5,0=N0) (ENTER

moves all visible files from Drive 1 onto Drive 0. You are not
questioned before each file is moved.

CONY =2 :0@ (NEW) (ENTER

moves only those files from Drive 2 that do not already exist on
Drive 0.

CONY $$$DATA:1 :2 (0OLD) (ENTER

moves any file whose filename is seven or eight characters long, the
4th through 7th characters are DATA, and that already exists on Drive
2. You are questioned before each file is moved.

CONY :1 (DIR) (ENTER)

displays the directory of the TRSDOS 1.3 disk in Drive 1.
CONY :1 (INY,DIR)

displays the invisible files of the TRSDOS 1.3 disk in Drive 1.

1-57

Utility
COPY source [(TO)] destination [(parameters)]

Copies the source to the destination.

Source and destination can be a filespec or a devspec. Destination
can also be a drive number.

The parameters are:

LRL =nnn specifies the logical record length (1 to 256) for
destination. If omitted, destination will have the same LRL as
source.

CLONE = NO specifies that destination is not to have the
attributes of source.

ECHO causes any character copied from a devspec to be printed
on the screen.

X allows a single drive copy.

The LRL parameter lets you restructure files to make them compatible
with other programs. It is also useful when converting a source file
from one format to another.

If you wish to append two files with different LRLs, this parameter can
be used to make the LRLs match. If LRL is not specified, it defaults to
the LRL of source.

If CLONE is not specified, the directory entry as well as the contents
of source copies to destination. The owner and user passwords are
copied, along with the assigned protection level, the visibility in the
directory, the create flag, the last written-to date, and the modified
status of the file.

If CLONE =NO is specified, the system date becomes the last
written-to date for the destination file. If an existing destination file was
copied over, the attributes of the destination file (except for the date)
are unchanged. If the COPY command creates a new file, any
password included becomes both the user and owner password of the
destination file and the file’s Mod Flag is set. The destination file is
visible, even if the source file was invisible. See the ATTRIB library
command for more information on file attributes.

If you omit an extension with the destination filespec, TRSDOS tries to
find the destination filename with the same extension that source
filespec has. If you want to force TRSDOS not to include an extension
with the destination filespec, include only the (/) and omit the
additional characters.

1-58

Examples
COPY TEST/DAT TO :1 (ENTER

searches the disk drives to find TEST/DAT and copies it to Drive 1.
COPY TEST/DAT.PASSWORD:@® TO :1

copies the protected file TEST/DAT.PASSWORD from Drive 0 to Drive
1. All parts of the destination file, including the password, are the
same as those of the source file.

COPY TEST/DAT:® TO MYFILE:1 (ENTER

copies TEST/DAT on Drive 0 to MYFILE/DAT on Drive 1. Since the
destination filespec does not contain an extension, it defaults to /DAT
to match the source.

COPY DATA/NEW:® TO /0LD:@ (ENTER

copies DATA/NEW on Drive 0 to DATA/OLD on Drive 0. Since the
destination filespec does not contain a filename, it defaults to DATA to
match the source.

COPY TEST/DAT:® TO TEST/DAT.CLOSED:1
(CLONE=ND) (ENTER

copies TEST/DAT from Drive 0 to Drive 1 and assigns the user and
owner passwords CLOSED. To assign a password to a destination
filespec, the CLONE parameter must be turned off.

COPY DATA/V3B:@ TO DATA/VZB:1 (LRL=128) (ENTER

copies DATA/V56 on Drive 0 to DATA/V28 on Drive 1. The LRL of
DATA/V28 is set to 128.

COPY #KI TO *PR (ECHO) (ENTER

copies from the keyboard to the printer. As keys are pressed, they are
sent to the line printer. The keystrokes are visible on the video
because the ECHO parameter is specified. Pressing
(CONTRODSHIFD(@) or terminates the copy.

When copying from devspec to devspec, it is very important that all
devices specified be assigned and active in the system. Any routing
or setting affecting the devices may affect the copy.

It is very important to be aware that you can generate non-ending
loops that lock up the system when copying between devices. Be sure
to have a good understanding of this type of copy before you use it.

COPY #KI TO KEYIN/NOW:@ (ENTER

sends the keystrokes entered from the keyboard to the file
KEYIN/NOW on Drive 0. If the file already exists, it is written over. To
view the characters as you type them, use the ECHO parameter.
Pressing (CONTROLSHIFD(@) terminates the copy.

1-59

COPY TEST/DAT.SECRET:2 () (ENTER
copies TEST/DAT.SECRET from one disk to another.

The destination file TEST/DAT.SECRET is visible, and its owner and
user passwords are set to SECRET.

When you use the (X) parameter, a TRSDOS system disk is not
required in the copy if the proper system modules (1, 2, 3, and 4) are
loaded into memory (see the SYSTEM (SYSRES) library command).

During the copy, the following disk swap prompts are repeated until
the copy is complete. The prompts are:

Insert SOURCE disk (ENTER
— Contains the file to be copied.
Insert SYSTEM disk (ENTER

— Any TRSDOS SYSTEM disk. If system modules 1, 2, 3, and 4 are
loaded into memory, press (ENTER) at this prompt.

Insert DESTINATION disk (ENTER

— Receives the file being copied. May appear twice in a row. The
disk must have a different Disk ID (disk name, master password, or
date) from the source diskette. (If it is a system disk, use ATTRIB if
you need to change its Disk ID.)

You cannot use the (X) parameter in copies involving logical devices.
Sample Use

Every time you update a file, use COPY to make a duplicate file on
another disk. This protects you from having to re-enter the entire file if
the disk is ever damaged.

Use COPY to reduce file fragmentation. File fragmentation exists
when there is not enough contiguous space on a disk to store the file.
TRSDOS uses small areas of the disk where they are available.
Fragmentation increases the amount of time required to access the
data in the file. To reduce fragmentation, COPY the file to a disk that
has enough contiguous space for the file. The FREE command
displays the amount of free space on a disk. (See FREE and DIR for
more information on file fragmentation.)

To RENAME a file on the same disk, use RENAME, not COPY.
Error Conditions

If you omit the extension for destination filespec, TRSDOS tries to find
the destination filename with the same extension that source filespec
has. If TRSDOS cannot find that filespec, TRSDOS displays a “File
not in directory” error message.

1-60

If you include the X parameter with a COPY command in a JCL file,
TRSDOS displays an “Invalid command during DO processing™ error
message. You cannot change disks during JCL processing.

If the source and destination disks are the same and you execute a
COPY command with the X parameter, TRSDOS displays a “Source
and destination disks are the same” error message. You can omit the
X parameter if the source and destination disks are the same.

1-61

CREATE

Advanced Programmer’s Command
CREATE filespec [(parameters)]

Creates a file named filespec and pre-allocates space for its future
contents.

You can use CREATE to prepare a file which will contain a known
amount of data. This usually speeds up file write operations. File
reading is also faster, since pre-allocated files are less segmented or
dispersed on the disk — requiring less motion of the read/write
mechanism to locate the records.

The smallest unit of space TRSDOS allocates for a file is one granule.
A granule is one or more 256 byte sectors. The size of a granule
varies depending on the type of disk you are using. On double sided
disks there are six 256 byte sectors or 1.5 K in a granule. Use the
FREE command to see how large a granule is on a disk. See the
FREE command for more information.

If the size of a file requires more than one granule, but less than two
granules TRSDOS allocates 2 granules. TRSDOS cannot allocate a
portion of a granule. To determine how many granules will be
allocated for a file of a specific length, use these formula for double
density diskettes.

(LRL ® REC / 236) / B or 5IZE / 1.5

When a file is CREATEd, TRSDOS does not recover unused space at
the end of the file (each time you finish using it). If you exceed the
created size, TRSDOS allocates exira space for your file as you write
to it.

The parameters are:

LRL =number assigns number as the record length of filespec.
number can be from 1 to 256. If you omit this parameter, the
record length defaults to 256.

REC =number assigns the specified number of fixed-length
records to the file.

SIZE =number allocates disk space to the file as number (in K).

Note: You may not use Size if you include LRL or REC. You may only
use SIZE with files that contain 256-byte records or to CREATE new
files that contain 256-byte records. To increase the size of a file that
does not contain 256-byte records, use LRL and REC to specify the
new size as a larger number of records.

(For more information about record lengths and types, see “Disk
Files” in the Model 4/4P Technical Reference Manual.)

1-62

CREATE also lets you permanently assign additional space to a file
that already exists. Use the appropriate parameters for the new file
size.

Examples
CREATE NEWFILE/DAT:0 (LRL=128,REC=100) (ENTER

creates a file named NEWFILE/DAT on Drive 0 and allocates space
for one hundred 128-byte records.

CREATE GOOD/DAT (REC=50) (ENTER

creates a file named GOOD/DAT on the first available drive and
allocates space for fifty 256-byte records.

CREATE INVENT/DAT (SIZE=20) (ENTER

increases the size of the already existing file, INVENT/DAT, to 20
K-bytes. INVENT/DAT must contain 256-byte records to use the SIZE
parameter. If the records are not 256-byte, use the LRL and REC
parameters to increase the size.

Error Conditions

If the SIZE or REC parameters specify less disk space than is already
allocated for an existing file, TRSDOS displays a “File exists larger”
error message. The size and contents of the file are not changed.

If you omit drive, TRSDOS attempts to create the file on the first
available drive. If there is not enough space on that disk, TRSDOS
displays a “Disk space full” error message. Use the FREE command
to display available disk space. Try the CREATE command again,
specifying a drive that contains enough free space for the file that you
are creating.

Sample Use

Suppose you are going to store personnel information on no more
than 250 employees, and each data record will look like this:

Name (Up to 25 letters)
Social Security Number (11 characters)
Job Description (Up to 92 characters)

Your records would need to be 25 + 11 + 92 = 128 bytes long.
You could create an appropriate file with this command:
CREATE PERSONNL/TXT (REC=250,LRL=128) (ENTER

Once created, this pre-allocated file would allow faster writing than
would a dynamically allocated file, since TRSDOS would not have to
stop writing periodically to allocate more space (unless you exceed
the pre-allocated amount by adding more than 250 employees).

1-63

DATE

Command
DATE [mm/dd/yy]

Sets or displays the current system date.

When you start up your computer, you set the current system date.
TRSDOS uses that date when creating and accessing files, making
backups, and formatting. You can change the system date with the
DATE command. If you omit mm/dd/yy, TRSDOS displays the current
system date.

mm (month) is a 2-digit number in the range 01 to 12.

dd (day of the month) is a 2-digit number in the range 01 to 31. dd
must be a valid day of the month specified. For example, you cannot
specify dd as 31 when you specify 04 as the month. April does not
have 31 days.

You must include leading zeroes for month and day.
yy (year) is a 2-digit number in the range 80 to 87.

You can use any of the characters in the ASCII range 32 (X'20')
through 39 (X'27°) , 41 (X'29’) through 47 (X’2F’) and ASCII 58
(X’3A’), to separate month, day, and year. See Appendix C for a
complete list of the ASCII character codes.

Error Conditions

If you specify a value outside the valid ranges for mm, dd, and yy, or
if you specify an invalid separator between those values, TRSDOS
displays a “Bad Date format” error message.

When you execute a SYSTEM (DATE =NO) command, TRSDOS does
not store the current system date. Any attempt to display the date
results in a “Date not in system” error.

Examples
DATE (ENTER)
displays the current date, such as:
Fri, Oct 8+ 1882
for Friday, October 8, 1982.
DATE 10/09/82
resets the date to October 9, 1982 and displays the new date.

1-64

DEBUG

Advanced Programmer’s Command
DEBUG [([switch] [,] [parameter])]

The DEBUG command sets up the debug monitor, which allows you
to enter, test, and debug machine-language programs.

The switches are:

ON turns on DEBUG
OFF turns off DEBUG

If switch is not specified, ON is assumed.

The parameter is:
EXT specifies the extended debugger
EXT, ON, and OFF can be abbreviated to E, Y, and N.

Once you have turned on DEBUG, you automatically enter the debug
monitor whenever you do one of the following:

1. Press the (BREAK) key (provided (BREAK) is enabled)

2. Load and execute a user program (as long as the file’s
protection is not execute only)

You can also automatically activate the debugger by holding down the
(D) key while the system is booting.

While in the DEBUG monitor, you can enter any of a special set of
single-key commands to study how your program is working (as
detailed under Command Description below).

EXT loads a separate block of the system debugger into high
memory. While DEBUG is on, TRSDOS automatically protects this
area of memory from being overlaid by BASIC or other user
programs.

If you execute a program with execute only protection, DEBUG turns
off.

Examples
DEBUG

turns on the standard DEBUG and waits for it to be activated.
DEBUG (EXT)

turns on extended DEBUG (loads it into high memory) and waits for it
to be activated.

DEBUG (OFF) (ENTER

1-65

turns off standard or extended DEBUG.
DEBUG (OFF :EXT) (ENTER

Turns off DEBUG and attempts to reclaim the high memory occupied
by the extended debugger. If another program is loaded in high
memory below (after) the extended debugger is loaded, the space
used by the debugger cannot be reclaimed without resetting the
system.

To enter the monitor when DEBUG is on, type:
filesrec (ENTER

TRSDOS loads filespec. If the protection level is not execute only,
TRSDOS transfers control to DEBUG.

Following is a sample display of the debugger screen.

af = @1 93 S5--H--NC

be = @1 87 = FC 1B 13 06 2ZD @6 Z3 06 30 @6 OE 06 28 06 7B 19 44y e= #, .00
de = 92 08 => @5 6B 08 00 0@ @0 4B 49 @7 G@ 0B 00 00 00 44 4AF .h....KI JB....D0
hl = @A DD => FF 189 19 2D ZD 2D ZD 2D 2D 2D 2D 2D 2D 2D 0A @A i mmmme mmammey,

af = FF FF SZ1H1IPNC
bec'= 80 10 => CQ 00 @0 FF 00 FF @0 FF C9 @0 00 B1 FF FF FF 2F vuvuvuat vrvivas /
de’= d4A Bl =» 03 20 20 20 20 20 2@ 20 20 20 20 20 20 20 20 20 .

hl’= 4D 92 => F7 4E B4 69 72 2F 73 79 73 2C 33 32 @D FF 9@ FF Ndir/sy 5132,
ix = 02 @8 => @5 GB 0B 00 00 @0 4B 49 @7 G@ 0B 00 00 00 44

o
bl
=
=
-
@
Q
=}

iv = 00 BGA => 00 00 04 02 @0 00 00 Q0 00 00 05 @0 78 00 B7

=
=
x

sp = @3 EA => BB 08 50 0G 98 02 Z@ 04 4A ZB AF 4F 16 @6 78

=
S u
@
~ T
~
[

+
O
~ O
#®

x

pc = @8 E1 = 38

=
~
~3
@

25 79 FE 83 2B GBA ES

FFoe =3 2D 2D 2D ZD 2D 2D 20 2D 2D 2

f=]
o
o

FF1@ =3 2D 2D ZD 2D 2D 2D 2D 2D 2D 2D

j=]

FF2o =3

=]

20 2D 2D 2D ZD 20 20 ZD Z

(=]
o

2D 2D

(=]

[T 2 T T o |
[=]

o

[% T S % B)
f=}

o

F2 T T N T T 1
o

3 I I ™
o

FES S (T S T I 1
o

=]

3] I
o

o

FF3@ =3 2D 2D 2D 2D ZD 2D 2D 2D

o

2D 2D

The debug display contains information about the Z-80
microprocessor registers. The display is set up in the following
manner:

The register pairs are shown along the left side of the display,
from top to bottom. The current contents of each register pair are
shown immediately to the right of the register labels.

The AF and AF’ pairs are followed by the current status of the
flag registers to the right of the register contents. The other
register pairs are followed by the contents of the 16 bytes of
memory they are pointing to. The contents are shown in both
hexadecimal and ASCII representations. Non-displayable ASCII
characters are represented by periods.

The PC register shows the memory address of the next
instruction to be executed. The display to the right of that

1-66

address shows the contents of that address and the next 15
addresses.

The bottom four lines of the screen show the contents of the

memory locations indicated by the address at the left of each
line. These locations vary depending upon which command is
used.

Command Descriptions

When the DEBUG monitor is displayed, you can enter one of the
following single-key commands.

You must enter all numerics, addresses and quantities, as
hexadecimal values. If you make a mistake entering these
hexadecimal values, simply type the correct value before you press
(SPACEBAR). DEBUG ignores all but the last four digits in an address
and all but the last two digits of a byte. For example, if you want to
enter some data at address 6789 and you type 6780, type the correct
address before you press (SPACEBAR).

HE7886789 (SPACEBAR
A (ASCIl Modify)
Aaddress

Enter the above command to modify address. If the contents of
address are already on the display, vertical bars appear around the
byte being modified.

After you enter address, press (SPACEBAR). The address and its
contents appear in the lower left corner of the screen. To modify the
byte, type the new character. DEBUG moves to the next byte and
allows you to modify it.

In addition to typing a new character, you may also press:

© (SPACEBAR) to retain the value of the current address and
move to the next address.

® (ENTER) to exit from the A command.

Note: You cannot use the X command to cancel an incorrect A
command after you have entered an address to modify. If you press
(XD after you have entered an address, DEBUG stores the character
X at the current address. You must use to exit the A
command.

To store an ASCII space character, (X'20'), or a carriage return
(X’0D’), you must use the H command and enter a '20’ or a ‘0D’ at
the address of the space.

If you do not specify address, TRSDOS uses the current “memory
modification address” (shown by the vertical bars).

1-67

Example:

AD@®4 (SPACEBAR

displays the D004 and the character stored at D004 in the lower left
corner of the screen. Type the new character. Press to exit
from the A command or more characters to change the next
consecutive addresses.

B (Move Block of Memory)
Bstarting address,destination address,number of bytes

Enter the above command line to move a block of memory from
starting address to destination address.

Always specify a non-zero number of bytes. If you enter number of
bytes as 0, TRSDOS moves a block of 65,535 bytes to destination
address, causing the extended debugger to function improperly.

Example:
B3EQ®4 ,4E34 »14E (ENTER
moves the 14E-byte block of memory from 3E04 to 4E34.

C (Call Instruction)

Press (L) to single-step through the instructions pointed to by the PC
register. If a call instruction is encountered, the rouytine that it calls
is executed.

D (Display)
Daddress

Enter the above command line to display memory beginning at
address.

Example:

DE4@4
displays memory beginning at address E404.
F (Fill Memory)

Ffirst address,last address,byte

Enter the above command line to fill the block of memory from first
address to last address with the value byte.

Example:
F3D0B8,3E14,00
fills the block of memory from 3D08 to 3E14 with the value 00.

1-68

G (Go to an Address and Execute)
Gaddress,breakpoint1,breakpoint2

Enter the above command line to begin execution at address. If
address is omitted, execution begins at the PC address.

breakpoint1 and breakpoint2 are optional breakpoint addresses where
execution stops. The breakpoints must be in memory. The system
removes them when you return to debug.

Example:
GEOFF ,Feel,Fzo1 (ENTER

begins execution at EOFF. Stops execution at breakpoint addresses
FOO1 and F201.

H (Hex Modify)
Haddress

Enter the above command to modify address. If the contents of
address are already on the display, vertical bars appear around the
byte being modified.

After you enter address, press (SPACEBAR). The address and its
contents appear in the lower left corner of the screen. To modify the
byte, type the hexadecimal value. DEBUG moves to the next byte and
allows you to modify it. You may also press:

e (SPACEBAR) to modify the byte and move to the next address.
e (ENTER) to modify the byte and exit from the H command.

e (X to exit from the H command without modifying the current
byte.

Note: TRSDOS stores the new data as soon as you press

SPACEBAR) or (ENTER).

If you do not specify address, TRSDOS uses the current “memory
modification address” (shown by the vertical bars).

Example:
HD@ o4 (SPACEBAR

causes address D004 and the current byte value to appear in the
lower left corner of the screen. TRSDOS allows you to enter the new
byte value. Then press (SPACEBAR), (ENTER), or (X to continue.

I (Single-Step Execution)

Press (T) to single-step through the instructions pointed to by the PC
register. This command is identical to the C command except that any
calls encountered are stepped through instruction by instruction. (Note

1-69

that RST 28H, RST 30H, and RST 38H instructions automatically
convert the | command to a C command.)

J (Jump)
Press () to increment the program counter (PC) by 1.
O (Return to TRSDOS Ready)

Press (0) to return to TRSDOS. DEBUG is not turned off. (Use the
DEBUG (OFF) command to turn DEBUG off.)

Q (Port)

There are two kinds of ports — input and output. You read an input
port and you write to an output port.

Qport

Enter the above command line to read the byte at port and display its
value. There are 256 input ports (00 - FF).

Example:
045

displays the value of port 45 in the lower left corner of the screen.
Qport,byte

Enter the above command line to write the value of byte to port.
There are 256 output ports.

Example:

Q45,04
writes the byte value of 04 to port 45.
R (Register Pair)

Rregister pair code contents

Enter the above command line to change the specified register pair’s
contents to the new contents. There must be a space between
register pair code and contents.

The register pair codes are:

AF for AF AF for AF
BC for BC BC for BC
HL for HL HL for HL
DE for DE DE’ for DFE’
IX for IX
IY for IY
SP for SP

1-70

Example:

RBC 3D01
changes the contents of register pair BC to the value 3D01.
S (Full Screen Mode)

Press (8) to change the monitor format from the register display
mode to full screen mode. The full screen mode displays a page of
memory (256 bytes) beginning with the current display address (see
the D command).

U (Update)

Press (1) to constantly update the display and to show any active
background tasks. To cancel this command, hold down any key for
several seconds.

X (Return)
Press (XD to return the display to the normal register display mode.
; (Advance Memory)

Press () to advance the memory display 64 bytes in the register
mode and 256 bytes in the full screen mode.

— (Decrement Memory)

Press (=) to decrement the memory display by 64 bytes in the
register mode and 256 bytes in the full screen mode.

Disk Read/Write Utility

Lets you read or write to a specified block of memory. The command
line is:

disk drive,cylinder,starting sector,operation,address,number of
sectors

address is the starting address in memory where the information read
from the disk is to be placed, or where information written to the disk
is to be taken from.

Specify operation as: R for Read, W for Write, or * for a Directory
Write.

If you do not specify cylinder, the system uses the directory track. If
you do not specify starting sector, the system starts with sector 0. If
you do not specify number of sectors, the system reads the whole
cylinder.

If an error occurs during a disk function, the error number appears on
the screen surrounded by asterisks. Hold down the (ENTER) key to
abort the disk function.

1-71

Example:
2+04+0:R 6000 2 (ENTER

reads into memory (beginning at address X'6000’) sectors 0 and 1 of
cylinder 0 from the disk in Drive 2. This block of memory is displayed
on the monitor in the full screen mode.

Extended Command Descriptions

The following commands are available only with the extended
debugger.

E (Enter Data)
Eaddress

Enter the above command to enter data directly into memory
beginning at address. The contents of address are displayed and you
can then type in two hex characters to replace the current contents.
After typing the byte, press:

© (SPACEBAR) to modify the byte and move to the next address.
@ (ENTER) to modify the byte and exit from the E command.
e (XD to exit from the E command without modifying the byte.

If you do not specify address, TRSDOS uses the current memory
modification address (shown by the vertical bars).

Note: TRSDOS stores the new data as soon as you press
(SPACEBAR) or (ENTER).

L (Locate)
Laddress,byte

Enter the above command to locate the first occurrence of byte,
starting the search at address.

If you don't specify address, DEBUG uses the current memory
modification address (shown by the vertical bars). If you don’t specify
byte, DEBUG uses the last byte given in a previous L command.

Example:

L470E »2D
searches for the first occurrence of 0D after address 470E.
N (Next Load Block)

Enter the above command to position the vertical bars to the next
load block. This command is used to move logically through a block
of memory that has been loaded directly from disk using DEBUG.

1-72

The load block type byte is a byte at the beginning of every block.
Before you can use this command you must position the vertical bars
over the load block type byte. To do so, use the H command by

typing:
Haddress
Example:

Position the vertical location bars over the beginning byte of a load
block and type:

N
DEBUG advances to the beginning byte of the next load block.
P (Print)

Pfirst address,last address

Enter the above command line to print out the block of memory from
first address to last address.

Example:
PFCBo »FCO0 (ENTER

prints out the block of memory from FC80 to FC90 in the following
format:

aaaa bb bb ... bb cccceecceecceccce
aaaa represents the current address
bb bb ... bb represents 16 locations in hex notation
cece represents the ASCII equivalents of the 16 hex
locations

T (Type ASCII)
Taddress

Enter the above command line to type ASCII characters directly into
memory, starting at address. If you omit address, DEBUG uses the
current memory modification address (shown by the vertical bars).

Example:
TCB@1 (SPACEBAR

displays the address CB01 and its current contents in ASCII code. If
the contents of the address are out of the ASCII character range, then
a period is displayed.

1-73

DEBUG then prompts you to enter the new ASCII contents for CB01.
Type:

A
to enter the hex value for A, which is 41, in address CB01.

Pressing (SPACEBAR) advances memory one byte without changing
its contents. DEBUG continues to prompt you to add ASCII values

until you press (ENTER) to exit the command.
V (Compare)
Vfirst address,second address,length

Enter the above command line to compare a block of memory
beginning at first address to the block of memory beginning at
second address. The compare is for the specified length in bytes
(X'0001" — X'FFFF’).

Example
UCBOQ +EF@Z ;45 (ENTER

compares a 45-byte long block of memory beginning at CB00 to a
45-byte long block of memory beginning at EF02. The first byte of the
block of memory beginning at CB00 that does not match is displayed
as the first byte of memory in the DEBUG monitor. The corresponding
byte in the block of memory beginning at EF02 becomes the current
memory modification address that is used by the H, A, E, and T
commands.

W (Word)
Waddress,word

Enter the above command to search memory for word, beginning at
address. word must be in the least significant byte, most significant
byte format.

If you do not specify address, DEBUG uses the current memory
modification address. If you do not specify word, DEBUG uses the
last word given in a previous W command.

Example:
WAB®G 3412 (ENTER

searches memory for word (1234) beginning at address AB06. The
address where word is found is displayed in the DEBUG monitor with
the vertical location bars positioned one byte before it.

1-74

DEVICE

Advanced Programmer’s Command
DEVICE [(parameters)]

Displays the status of the drives, the options selected, and the data
paths for the logical devices that have been set, routed, or linked.

It also logs in disks in the available disk drives.
The parameters are:

D=NO suppresses the drive portion of the display. Any new
drives or disks are not detected.

B=YES enables the logical device portion of the display.

S=NO suppresses the options status portion of the display.

P=YES duplicates the display to the printer.

:@ WP [TRSDOSGX1 S" Flaeppy #1y Cvls= 4@, Dden, Sides=1, Step=Bms, Dlv=.,5s
i1 [TRSDOSEX]1 5" Floepey # 2, Cvls= 40, Dden, Sides=1, Step=Bmss Dlv=,8s
*KI (= W'08F@’

*DO <=> X’'0BBEG’

*PR =» X'QEOF’

*81 <= #KI

*80 <= *DO

*JL o o= Nil
Options: Tvre

1. The DRIVE section shows the current configuration of the disk
drives.

2. The DEVICE section shows the devices (displayed when B=YES).
3. The STATUS section displays the status of some user selected

79991797 17

‘A

0 WP [TRSDOSGX1 5" Floepy #1y Cvls= 40, Ddens» Sides=1, Ster=Bms, Dlv
[TREDDSEXT 5" Floepy #2, Cyls= 46, Ddens Sides=1, Ster=Bmsy Dlv=

1. Logical drive number — The number of the drive accessed. (See
the SYSTEM command.)

2. Disk write protect status — The write protect status assigned to
the drive by the SYSTEM (DRIVE =,WP =) command. A disk can
also be write protected by placing a foil tab over the write-protect
notch on the diskette.

WP = Write Protected
3. Disk name — The name of the disk accessed in the drive.
4. Disk size — The size of the floppy or hard disk.

1-75

10.

11.

. Type of drive — Either floppy or hard.

For floppy disk systems, the physical location of the drive.
1 - lower
2 - upper
4 - middle of the disk expansion cable
8 - end of cable
Number of cylinders — The number of cylinders specified when
the disk in the drive was formatted.
Density — The data density of the disk accessed in the drive.
Dden =Double density
Sden =Single density
Fixed =hard disk
Number of sides for floppy diskettes — The number of sides the
disk being accessed has.
1=0ne side
2="Two sides
Step rate for floppy drives — The step rate of the drive in
milliseconds. Step rate is the speed at which the disk drive head
is moved from cylinder to cylinder.
Delay time for floppy drives — The delay time when accessing a
5" floppy disk. Delay time is the amount of time the system waits

after starting the drive motor before it attempts to access the disk.

NOTE: The Step rate and Delay time are preset for the system. See
the SYSTEM command to change these values.

Kl < = XO08FQ

*D0O < = >X'0B88g’

*PR =>*L0| *TD & = > X'0EQF’
%S| < ==Kl

*SO < =>*DO

*JL = >Nil

*FF < # >[Inactive]X'0FFE’
*TD < = >PRINT/TXT:0
*L.0 =>X'0EQF

In the logical device portion of the device table:

indicates an input device
indicates an output device
> indicates a device capable of input and output
indicates a filter
indicates a link

THALA
v

If you add a driver or filter to the default system, the DEVICE
command shows the address where a device transfers control to its
driver or filter. If more than one filter or driver is associated with the
same device, the first driver’s address is displayed. It also shows the
interaction between devices and/or files.

Options: Type
System modules resident: 1, 2, 4

1-76

The options line displays the active system options. System options
are usually established with the FILTER, LINK, ROUTE, SET, SPOOL,
and SYSTEM library commands. The options are:

Fast/Slow

Forms

Graphic

KSM

Memdisk

Smooth

indicates the system speed. Fast indicates that the
system is running at 4mhz. Slow indicates that the
system is running at 2mhz. The slow speed is the
Model Il system speed. Timing loops in TRSDOS
Version 1 programs may require the slower speed
for the programs to function properly under
TRSDOS 6. The default value for speed is Fast.
See the SYSTEM command for additional
information.

indicates that the FORMS filter is in memory. This
does not indicate that the filter is filtering. The
default for FORMS is Off. See the SET, FILTER,
and FORMS commands, and Appendix | for
additional information.

indicates that during screen prints (CTRD (:)) the
printer has the capability to print graphics
characters. Graphics characters are ASCII values
greater than X’7F'. You must have a graphics
printer to print these characters. The default value
for Graphic is off. When Grapbhic is off during
screen prints, the printer prints all characters
having a value larger than X'7F" as periods (.).

indicates that the Keystroke Multiply Filter (KSM)
is in memory. This does not indicate that the filter
is filtering. The default for KSM is off. See the SET
and FILTER commands, and Appendix | for
additional information.

indicates that the Memdisk utility is active. The
default value for Memdisk is Off. See the SYSTEM
command and Appendix | for additional
information.

causes TRSDOS to disable interrupts when
reading data from a floppy disk. Smooth increases
disk access speed. However, the type-ahead
function depends on interrupts occurring at regular
intervals. Disabling the interrupts can cause a loss
of keystrokes during disk I/O. When Smooth is
active, the time-of-day clock is not accurate. The
default value for smooth is On. See the SYSTEM
command for additional information.

1-77

Spooler indicates that the device spooler is buffering text
being sent to the line printer or the RS-232C
communications line. The default for the spooler is
Off. See the SPOOL command or Appendix | for
more information on activating the device spooler.

Type indicates the type-ahead function is buffering
keyboard strokes until the system is ready for
them. This allows you to type in information before
the system prompts you for it. If you disable the
type-ahead function, programs run slightly faster.
The default for the Type is On. See the SYSTEM
command for more information on the type-ahead
function.

Verify indicates that the system is verifying each sector
of data as it is written to disk. An error message
appears if the system cannot read the data.
Although verify slows disk 1/O slightly, it can save
time in the future if there is something wrong with
the data. The default value for Verify is Off. See
the VERIFY command for additional information.

The system line displays the resident system overlays. See the
SYSTEM (SYSRES =) library command.

Examples
DEVICE

displays the device table.
DEVICE (D=NO)

displays the TRSDOS options, and turns the drive portion of the
display off. Any new drives or disks are not detected.

DEVICE (B=YES) (ENTER

enables the device portion of the device table, and displays the entire
table.

DEVICE (5=N0) (ENTER

displays the drive table, and turns the options status portion of the
display off.

DEVICE (P) (ENTER
displays the drive portion on the display, and sends it to the printer.

1-78

DIR

Command
DIR [-][partspec][:][drive T][-][:][drive2]
[(parameters)]

Displays the directory for one or more drives.

The DIR command displays complete directory information for the files
on one drive or a range of diskettes.

If you specify partspec, DIR displays only the filenames that match
partspec. If you specify partspec, preceded by a hyphen (-), DIR
displays all filenames that do not match partspec. If you include a
drive number with partspec, you must include the colon (:).

Colons are optional in the syntax of the DIR command except when:
@ You specify partspec with a drive number.

@ You include a colon for drive1, you must omit the colon for
drive2.

If you omit the drive numbers, DIR displays the filenames on all
enabled drives. You can include the hyphen to specify a range of
drive numbers. If you specify:

drive1-drive2 displays the directory for diskettes in drive1
through drive2.

drivel- displays the directory for all drive numbers
equal to or greater than driveT.

-drive2 displays the directory for Drive 0 through
drive2.

Specifying parameters allows you to select which filenames DIR prints
on the screen or line printer. You must enclose parameters in
parentheses. If you include more than one parameter, separate each
with a comma. You cannot abbreviate the SORT and SYS parameters.
The parameters are:

ALL=NO displays the filenames for the specified drive(s). The
default value is ALL=YES.

INV displays all filenames, visible and invisible.
MOD displays filenames modified since the last backup.
NON enable non-stop display mode. When the directory

information fills a screen, NON scrolls lines off the
top of the screen.

PRT the directory display prints on the printer and the
screen. If you specify PRT, DIR assumes the NON
parameter.

SYS displays system and visible filenames.

1-79

ol 9

Drive \ :0
Filesrgc

CLICK/FLT
COM/DVR
COMM/CMD
CONV/CMD
DOS/HLP
FLOPPY/DCT
FORMS/FLT
HELP/CMD
KSM/FLT
LOG/CMD
MAILLIST
MEMDISK
REPAIR
TAPE100/CMD

TREQDSEX Iﬂ@ CYT DDEN [Free = 745K /

DATE = “date1-date2” displays the filenames that have been
modified on or after date7 and before or on date?2.
“date” displays the filenames that were modified on
date.

“date-" displays the filenames modified on or after
date-.

“-date” displays the filenames that were modified on
or before date.

Dates must be in the format: MM/DD/YY.

SORT = NO does not sort the filenames in alphabetical order. DIR

assumes SORT =YES.

180.,00K Date 10- Feb B84
MOD ttrib Prot LR #Rec EOF File Sizfe Mod Dat,
P EXEC 256 3 1 1.50K 1 10-Feb-84
P EXEC 256 a 181 1,50K 1 10-Feb-84
P EXEC 256 12 77 3.00K 1 10-Feb-84
P EXEC 256 7 37 3,00K 1 10-Feb-84
FuLL 1 20115 146 21.00K 1
P READ 256 3 a7 1.50K 1 10-Feb-84
P EXEC 256 a4 148 1.50K 1 10-Feb-84
P EXEC 256 12 245 3.00K 1 19-Feb-B4
P EXEC 256 4 53 1.50K 1 10-Feb-84
P EXEC 256 2 110 1.50K 1 10-Feb-84
FULL 256 30 66 750K 1 10-Feb-84
P READ 256 23 188 3.00K 1 190-Feb-84
P EXEC 256 4 139 1.50K 1 10-Feb-84
P EXEC 2586 9 51 3.00K 1 10-Feb-84
14 files out of 37 selected: Space = 54.,00K

Drive :1 [No Diskl : A

Drive Number.
Disk Name.
Number of cylinders on the disk.

L o=

Density of the disk.

DDEN = double density
SDEN = single density
Hard = hard disk

5. Free space — The amount of unused space on the disk.

6. Total free space — The amount of space (used and unused) on
the disk.

7. Creation date — The date of creation.

8. Filespec — The name and extension assigned to the file when it
is created. The filenames are sorted alphabetically unless you
specify SORT = NO.

1-80

9.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.
20.

Modification Status — The modification status of the file.
+ indicates the file has been modified since it was last
backed up.

Attribute — The file’s attributes.

indicates an invisible file.

indicates the file has an owner password.

indicates a system file.

indicates the file was created with the CREATE library
command or pre-allocated by an application program.
indicates that the file is a Partition Data Set (PDS) file.
See the Model 4/4P Technical Reference Manual for
additional information on a PDS.

? indicates an open file. See RESET library command.

OwT—

*

Protection Level — The level of access assigned to the user
password. See the ATTRIB library command for a list of these
levels.

Logical Record Length (LRL) — The length of the logical records
in the file. Logical records can be 1 to 256 bytes.

Number of Records — The number of logical records in the file.

End of File (EOF) — Shows the last byte number in the last
sector of the file.

File Size — The amount of space in K (1K= 1024 bytes) that the
file takes up on the disk.

Extents — The number of non-continuous blocks of space used
to store the file. The higher the number, the more fragmented the
file is on the disk.

Modify Date — The date that the file was created or last written
to. The system uses the date you enter at start-up.

Specified Files — The number of files on the disk that match the
parameters you specify with the DIR command.

Total Files — The total number of files on the disk.
Space — The amount of space used by the specified files.

Examples

DIR (ENTER

displays the filenames of all visible files on all enabled drives.

DIR :1- (ENTER

displays the visible filenames on enabled drives that are equal to or
greater than one.

1-81

DIR (INV:5YS) (ENTER

displays all filenames (visible, invisible, and system) on all enabled
drives.

DIR @ (PRT.MOD) (ENTER

prints and displays the visible filenames on Drive 0 that have been
modified since the last backup. When you specify the PRT parameter,
DIR assumes the NON parameter and displays the filenames on the
screen without pausing. You can press (SHIFD and (@) to pause the
display. Press any key to continue.

DIR 1 (DATE="0d4/16/84-") (ENTER

displays the visible filenames on Drive 1 modified on or after April 16,
1984.

DIR -1 (DATE="07/20/84") (ENTER

displays the visible filenames on Drives 0 and 1 modified on July 20,
1984.

DIR /CMD:o (ENTER

displays the visible filenames on Drive 0 that have the extension
/CMD.

DIR -/CMD:® (ENTER

displays the visible filenames on Drive 0 that do not have the
extension /CMD.

Error Conditions

If you specify a drive number that does not exist or that is not
enabled, DIR issues an “lllegal drive number” error message.

If you specify a range of drive numbers, each with a colon, DIR
assumes that the second colon is a drive number and displays an
“Illegal drive number” error message. Try the command again and
only include the colon for the first drive number.

If you specify an enabled drive number that does not contain a
formatted disk, DIR displays the message “[No Disk]".

1-82

DO

Command
DO [control character] filespec [(parameters)] [;]

Compiles and executes a DO file.

You can use DO to run a file of commands each time TRSDOS starts
up.

A DO file is a user created Job Control Language (JCL) file that
contains one or more library commands. TRSDOS executes the
commands as if you had typed them in from the keyboard.

In addition to executing TRSDOS commands, you can load and
execute user programs from a DO file.

You can create a DO file with the BUILD command. Command lines
in this file can include library commands or filespecs. See Appendix
A/ Job Control Language for more information on JCL files.

The control characters are:

$ compiles your DO file without actually executing the
commands.

= executes your DO file without compiling it.

* reruns the last DO command that was compiled.

When you specify a control character, you must leave a space
between DO and the character or TRSDOS ignores the character.

The parameters are:

@label lets you create JCL files with multiple entry points (an
entry point is the place where processing begins). A label
consists of the @ symbol followed by one to eight alphanumeric
characters.

parm[=value] lets you pass value to filespec during execution.

When you specify the @label parameter, filespec does not execute
until the label is reached. Execution continues until it reaches the next
label or the end of the JCL file.

The @label parameter, by building many different functions into one
file, reduces the number of individual files on the disk (conserving
space in the directory).

Use the semicolon (;) parameter when you need to specify a
command line longer than 79 characters.

When a DO command line exceeds 79 characters:

1. Enclose as many parameters as will fit on one line in parentheses.
Close the parentheses, insert a (;), and press (ENTER).

1-83

2. When a question mark appears on the screen, enter the remaining
parameters (enclosed in parentheses).

Examples
DO DRIVE/JCL

compiles and executes the file named DRIVE/JCL.
DO = DRIVE/JCL

executes the file named DRIVE/JCL without compiling it.
DO $ DRIVE

compiles the file named DRIVE/JCL without executing it. Since you
did not specify an extension to DRIVE, it defaulted to JCL. You can
LIST the SYSTEM/JCL file to see if the JCL compiled properly.

DO MY/JCL (BTHIRD) (ENTER

compiles and executes the program named MY/JCL. All instructions in
the program are ignored up to the label (@THIRD). Compilation
begins at the line following the label and continues until the next label
or the end of the file is reached.

DO « (ENTER

executes SYSTEM/JCL, which contains the last DO file that was
compiled.

DO TEST/NEW:2 (D=5,E=6) (ENTER

compiles and executes the file TEST/NEW on Drive 2. The variable
parameters D=5 and E=6 are passed as needed during compilation.

Error Conditions

If TRSDOS encounters an error while processing a DO command,
TRSDOS does not execute the DO command.

If a JCL line is longer than 70 characters, TRSDOS displays a “Line
too long” error message.

If you specify a value for token that is more than 32 characters long,
TRSDOS displays a “Symbol string too long” error message.

If you specify a label that DO cannot find in the JCL file, TRSDOS
displays a “Procedure not found” error message.

If you specify more than one label in a command line, TRSDOS
displays a “Too many Proc labels” error message. Labels specify a
point where processing begins and processing can only begin at one
point.

If the diskette is not in the drive or is write-protected, TRSDOS
displays a “Can’t create SYSTEM/JCL file” error message.

1-84

If you assign two values to the same token in a JCL command,
TRSDOS displays a “Multiply defined” error message.

If you specify more than 10 /INCLUDE statements in a JCL
procedure, TRSDOS displays a “Too many nested INCLUDES” error
message.

When you specify the * control character, a “File not in directory”
error occurs if there is no previously compiled DO file to rerun.

When you specify the $ control character, the system compiles the
JCL file and informs you of any errors that occur. This lets you see if
the file compiles properly before you actually execute it. When you
compile a JCL file, a disk in your system must be write-enabled, so
the system can write the compiled information to a file named
SYSTEM/JCL.

When you use the = character, you cannot use some of the JCL
features. See the JCL section of this manual.

Sample Uses

Suppose you want to set up the following TRSDOS functions to
execute by typing one command:

FORMS (MARGIN =8)
TIME (CLOCK=ON)

Use BUILD to create such a file. If you called the file BEGIN, then use
the command:

DO BEGIN (ENTER
to perform the commands.

1-85

DUMP

Advanced Programmer’s Command
DUMP filespec (parameters)

Copies an area of memory to a disk file named filespec.

You can use DUMP to store a machine-language program from
memory to a file.

DUMP can produce a program or a core ASCII file. A program
produced with DUMP can then be loaded or executed at any time.
(An ASCII file cannot be loaded with the LOAD command or executed
with the RUN command.)

The default extension for program dumps is /LMF, and the default
extension for ASCII dumps is /TXT.

You can use some or all of the following parameters:

START = address starts the dump at address. You must include
this parameter. The address must be above 2FFF
hexadecimal or 12287 decimal.

END = address ends the dump at address. You must include this
parameter. END must be greater than or equal to START,
and can be either a hexadecimal or decimal number.

TRA =address sets the address at which your program begins
executing after you load it. If you omit this parameter, any
subsequent run of the file will only load the program and
return you to TRSDOS Ready. TRA can be either a
hexadecimal or a decimal number.

ASCII specifies that the dump is to an ASCII file. ASCI! files
contain program code only. No system loading information is
written to filespec.

ETX =value specifies that the character at the end of an ASCII
file is equal to value. value is a hexadecimal number in the
format x'nn’. When you specify ETX, you must also specify
ASCII.

ETX cannot be abbreviated.

When you DUMP to an ASCII file, you create a file that has the
identical file structure as a SCRIPSIT file. The system writes a special
character at the end of the file which can be changed with the ETX
parameter.

Examples

DUMP ROUTINE/CMD (BTART=X'7000' END=X'B000' TRA=
¥/ 7000 ") (ENTER

dumps the area of memory starting at hexadecimal 7000 and ending
at hexadecimal 8000. This block of memory is written to a disk file

1-86

named ROUTINE/CMD. If the file already exists, it is overwritten. If it
does not exist, it is created on the first available drive. The transfer
address (starting address for execution) of ROUTINE/CMD is
hexadecimal 7000.

DUMP ROUTINE/CMD (START=28B72,END=32768B,TRA=

28672) (ENTER)

is identical to the above command except that START, END, and
TRA have decimal values.

DUMP TEST:1 (S=X'800@¢ ' E=X'BCOF’) (ENTER

dumps the specified block of memory to a disk file named TEST/LMF
on Drive 1. Since you did not specify a file extension to TEST, it
defaulted to /LMF. Also, since you did not specify a transfer address,
it is written to the file as a return to TRSDOS Ready.

DUMP WORD/IMG:® (S5=X'7000 ' +E=X'A00AQ' s ASCII)
ENTER

dumps the specified block of memory to a disk file named WORD/IMG
on Drive 0. Since the ASCII parameter is specified, an ASCI| file is
created.

DUMP WORD (S5=X'7050' E=X'AQ@D ' +ETH=X'FF'+ASCII)
ENTER

dumps the specified block of memory to a disk file named
WORD/TXT. An ASCI! file is created, and the special character at the
end of the text (end of text marker) is written as hexadecimal FF.
Since you did not specify an extension for WORD, it defaulted to
/TXT.

If you specify a START address that is less than END address,
TRSDOS displays a “START or END error’” message.

1-87

FILTER

Advanced Programmer’s Command
FILTER devspec [USING] phantom devspec

Connects a filter program to devspec which modifies or “filters” data
as it is read from or written to devspec.

A filter is a program that controls the flow of data to or from a device
or file. You can use a filter to change data as it passes from devspec
to phantom devspec (and vice versa). You can apply more than one

filter to a device.

devspec is any valid, active TRSDOS device. phantom devspec is the
name of a device which is connected to the filter program established
in memory with the SET command.

You can apply as many filter programs to devspec as you want to. If
there is not any more space in memory for the filter connection, the
error message “No device space available” appears.

*See the SET command for more information on FILTER.
Example

Suppose you create a filter program named CONVERT/FLT that
converts a linefeed character to a “null”, and you establish it in
memory with the SET library command to a device, *LF.

FILTER #PR USING =LF (ENTER

filters 1/0 directed to the line printer through the CONVERT/FLT
program. As a result of this filter program, all linefeed characters in

output directed to the printer are converted to the null character
(ASCII 0).

Sample Use

You can use a filter to control a printer working with non-standard size
paper (see Appendices | and K, and the FORMS library command).

Error Conditions

If you specify a filter device that is already in use, TRSDOS displays a
“FILTER module in use” error message. TRSDOS also displays this
message if you attempt to link a filter device to more than one device.

If there is not enough memory space for the filter connection,
TRSDOS displays a “No device space available” error message.
Remove unused devices and try the command again.

1-88

FORMAT

Utility
FORMAT [.drive [(parameters)]]

Prepares a blank or old disk for use by defining the tracks and sectors
and writing system information onto it. (For more information, see
“Diskette Organization” in the Model 4/4P Technical Reference
Manual, Cat. No. 26-2110.)

You can use FORMAT to organize a disk so you can store information
on it.

drive specifies the drive in which the blank or old disk is to be
formatted. If you omit the drive, TRSDOS prompts you for it.

The parameters are:

ABS overwrites any existing data without prompting. The ABS
parameter is used primarily when you execute a FORMAT
from a JCL file. See the JCL section for more information.

NAME = “disk name” assigns a name to the disk being formatted.

MPW = “password” assigns the master password to the disk.
The master password allows limited access to all user files.

SDEN specifies the density of the disk as single.

DDEN specifies the density of the disk as double.

CYL=number specifies the number of cylinders (iracks) for the
disk. number can be 35 to 96.

QUERY = NO turns off the prompts for density, number of
cylinders, name, and password.

DIR =number specifies which cylinder to put the directory on.
number must be less than the value you specify with the
CYL parameter and greater than one. If you specify an
invalid value or omit the DIR parameter, FORMAT assumes
the center cylinder of the drive. On a 40-cylinder floppy
diskette, FORMAT assumes 20.

SYSTEM recreates the directory file on a hard disk. TRSDOS
assumes that you have previously formatted the hard disk. If
the hard disk contains any files, they are not accessible
after you include the SYSTEM parameter.

QUERY is the only parameter that can be abbreviated.

When to Format

To prepare a new disk. Before you can use a new disk, you must
format it. After formatting, record the disk name, date of creation, and
password. Store this information in a safe place. It helps you estimate
how long a diskette has been in use. And, if you forget the master
password, it ensures continued access.

1-89

To erase all data from a disk. To “start over” with a disk, you can
reformat it. This erases all old information and locks out all flawed
sectors which have developed. It puts the system information back on
the disk and leaves the “good” sectors available for information
storage.

The Format Prompts

If you specify the drive number, disk nhame, or master password in the
command line, you are not prompted for them.

If you specify either the DEN or CYL parameters, the system uses the
default values for the other parameters.

If you enter a FORMAT command without specifying any parameters,
you are prompted for them in the following order:

Which drive is to be used?
Enter the number of the drive you are formatting in.
Diskette name?

Enter any name with up to eight alphanumeric characters. The first
character must be a letter. Press (ENTER) and the disk name defaults
to DATADISK.

Master password?

Enter any password with up to eight alphanumeric characters. The
first character must be a letter. Pressing (ENTER) causes the master
password to default to PASSWORD.

The remaining prompts concern the type of diskette you are using.
Press (ENTER) in answer to each of them if you are using standard
Radio Shack diskettes.

Sindle or Double density <8:D7

Enter (8) for single density or (D) for double density. Press (ENTER
and the value defaults to double density.

Number of cvlinders?

Enter any number from 35 to 40 on TRS-80 hardware. Pressing
(ENTER) causes the system to default to the value set with the
SYSTEM (CYL =) command. If this value is not set, the default is 40
cylinders.

If you are formatting a disk in Drive 0 or the destination drive is not
ready, the following message is displayed:

Load destination disKette <ENTERZ

Insert the destination diskette and préss (ENTER) to continue, or press
BREAK) to return to TRSDOS Ready.

1-90

It is important that you do not remove the system disk and insert the
disk to be formatted until this prompt appears.

After you enter a format command and before the actual formatting
begins, the system checks the destination diskette to see if it is
already formatted.

If the disk is formatted and its MPW is PASSWORD, the following
message appears:

Disk contains data -- Name=disKk name
Date=mm/dd/»¥
Are vou sure vouw want to formatr it?

Press to abort the FORMAT or to continue. If you specified
the ABS parameter in the command line, you see the DISK
CONTAINS DATA message, but you are not prompted to abort the
format.

If the disk is formatted and the master password of the destination
disk is not PASSWORD, the following message appears:

DisK contains data -- Name=disk name
Date=mm/dd/ vy
Evnter its Master Password or <BREAK* to abort:

Press (BREAK) to abort the format or enter the master password to
continue.

If the disk contains an incomplete or non-standard format, one of the
following messages may appear in place of NAME = disk name:

Unreadable directory
Nen~-standard format
Non-initialized directory

When the format begins, you see the cylinder numbers appear as the
necessary information is written to them. After all cylinders are written,
FORMAT verifies that the proper information is actually on each
cylinder.

If the verify procedure detects an error, an asterisk and the cylinder
number are shown on the screen. That cylinder is locked out, so that
no files can be written to the defective area. Use the FREE library
command to see the locked out cylinders on a diskette.

During parts of the format operations, the system real time clock is
turned off.

After formatting is complete, you are prompted to put the system disk
back in Drive 0 with the message:

Load SYSTEM diskette {ENTER:
The format is now complete.

1-91

Examples
FORMAT (ENTER

prompts you for the drive number, the diskette name, the master
password, the density, and number of cylinders, and checks to see if
the destination disk is already formatted.

FORMAT :1 (NAME="DATA3" MPW="SECRET" (ENTER

prompts you for the DEN and CYL parameters, and checks to see if
the disk in Drive 1 is already formatted. The disk in Drive 1 is
assigned the name DATA3 and the master password SECRET.

FORMAT :@ (NAME="FILES" s MPW="FILE®1" Q=N)
ENTER

displays the message:
LLoad destination disKette <ENTER:

When you insert the destination disk in Drive 0, the system checks to
see if the disk is already formatted. When the message:

Load SYSTEM disKette <ENTER:

appears, insert the system disk in Drive 0 and the format is
completed.

FORMAT :1 (QUERY=NOD,ABS) (ENTER

formats the disk in Drive 1 (with the default options) even if the disk
already contains data. Because you specified the ABS parameter, you
don’t have the opportunity to abort the FORMAT (if the disk is already
formatted and its master password is PASSWORD).

Error Conditions

FORMAT builds a track image of the diskette in memory. If there is
not enough memory available to build this track, TRSDOS displays an
“Insufficient memory for specified format” error message. TRSDOS
usually displays this message when HIGHS$ is set very low and the
FORMAT program requires memory above HIGH$. Reset HIGH$ and
try the FORMAT command again.

If you attempt to use the SYSTEM parameter with a diskette,
TRSDOS displays a “Cannot “SYSTEM” a floppy” error message.
The SYSTEM parameter is only valid with hard disks.

If you specify an invalid drive number, the error message “lllegal drive
number” appears.

If there is write-protect tab on the disk or the drive is protected by the
SYSTEM (DRIVE = ,WP) command, the error message “Disk write
protected” appears.

1-92

If the error message “Load destination diskette” appears after you
insert the destination diskette:

1. Be sure the disk drive door is closed.
2. Make sure that the diskette is inserted correctly.

3. If the drive is an external drive, make sure the drive is connected
and plugged into the outlet.

4. Try formatting the disk in a different drive.

If the message “Formatting complete” does not appear, repeat the
format. If the message still does not appear, it indicates a flawed disk.

Try another disk.

1-93

FORMS

Command
FORMS [(parameters)]

Sets up forms filter (+FF) parameters.

You can use FORMS to print a form larger or smaller than a
standard-size page.

Before you can use FORMS, you have to SET *FF to its filter

program FORMS/FLT and FILTER the printer to *FF. See Appendix .

The parameters are:

DEFAULT returns all parameters to their start-up values.

ADDLF issues a linefeed after every carriage return.

CHARS =number sets the number of characters per printed line.
number is 1 - 255.

FFHARD issues a form feed (Top of Form) character (ASCII
code 12) instead of a series of linefeeds.

INDENT =number sets the number of spaces a line is to be
indented if the line length exceeds CHARS. The default
value for number is 0.

LINES =number sets the number of lines to be printed per page.

The default value for number is 66.

MARGIN =number sets the left margin.

PAGE =number sets the physical page size as number of lines.
The default value for number is 66.

QUERY prompts you for each parameter.

TAB specifies that tab characters are to be translated into the
appropriate number of spaces.

XLATE =X’aabb’ specifies a one-character translation to be
performed by the filter.
aa is the character in hex format to be translated.
bb is the character in hex format aa is translated to.

To determine the parameters to set for:
page size multiply form length in inches by the number of lines

per inch.
lines per determine the number of blank lines at the bottom of
page every page. The default number of blank lines is 0. If

LINES = PAGE, then text can be written on every line
of each page. LINES cannot exceed PAGE.

characters multiply form width in inches by the number of

per line characters per inch (10 or 12). Use CHARS to set the
maximum number of printable characters per line. If a
line is greater than CHARS, then TRSDOS

1-94

automatically breaks the line at the maximum length,
and continues printing at the next line. The line is
indented if you have specified INDENT.

Examples

Be sure that you have SET *FF to its filter program FORMS/FLT and
you have FILTERed the printer to *FF with the commands:

SET *FF TO FORMS/FLT (ENTER
FILTER #PR *FF (ENTER

FORMS (ENTER
displays the current parameter values.

FORMS (CHARS=8B®:INDENT=6PAGE=31»
LINES=45,FFHARD) (ENTER

allows a maximum of 80 characters per printed line. If a line contains
more than 80 characters, the excess is printed on the next line and
indented 6 spaces. The physical page size is set to 51 lines, and 45
lines can be printed on a page.

FFHARD allows the printer to manage top-of-form. Most printers that
support top-of-form have a control that must be set to the length of
the paper for FFHARD to function properly. The default for this control
is usually 66 lines per page. Not all printers support top-of-form.
Check the owners manual for the printer you are using for information
on top-of-form control.

FFHARD is faster than sending a series of line feeds. If you are using
the system spooler, FFHARD requires less space in memory and on
disk. See the SPOOL command.

FORMS (MARGIN=10,CHARS=80,INDENT=16) (ENTER

causes all lines to start 10 spaces in from-the normal left-hand
starting position. Any line longer than 80 characters is indented 16
spaces (6 spaces after the margin) when wrapped around, so it is
printed starting at position 16.

FORMS (TAB.ADDLF) (ENTER

specifies that tab characters are to be translated into the appropriate
number of spaces. Also, a linefeed is sent to the printer every time a-
carriage return is sent.

FORMS (XLATE=X'ZAZE’) (ENTER

translates all hexadecimal 2A characters (asterisks) to hexadecimal
2E characters (periods).

1-95

Sample Uses

Suppose you have a payroll program that contains all of your
employees’ payroll information, and that prints checks of the size 4”
X 7"

To instruct your computer to print a form 4” x 7", issue the following
commands:

SET #FF TO FORMS/FLT (ENTER
FILTER #PR #FF (ENTER
FORMS (CHARS=55.,LINES=20+PAGE=24) (ENTER

Now when you run your payroll program, you can print the checks on
the proper size form.

1-96

FREE

Command
FREE [:drive] [(parameter)]

Lists the amount of space that is free (available for use) and the
number of files on each drive, if no drive is specified. If drive is
specified, displays a free-space map of the disk in that drive.

You can use FREE to see how many files are on a disk. You can also
use FREE to see a table containing information about each disk in
your computer.

The parameter is:
PRT sends output to the printer.
FREE displays free-space information about each enabled disk in the

following format:
997 999

Drive :@ TRSDOSGX @Z2/02/83 Free Space = 94.50K/ 180.00K Files = 9896/128
Drive :1 TRSDOSBX @2/17/83 Free Srace = 91,50K/ 180.00K Files = 87/128

1. Drive number — The number of the drive whose free space map is
displayed.

2. Disk name — The name of the disk.
3. Date — Creation date.

4. Free space in K — The amount of space (in K) that is available for
use. 1K = 1024 bytes.

5. Total space in K — The total amount of space (in K) on the disk.

6. Number of files — The number of directory entries you have
available. Each file uses one or more directory slots.

7. Total number of files — The total number of directory slots
available on the disk.

1-97

FREE displays a free space map of the specified disk in the format
shown below.

Drive :® TRSDOSBE® ©2/02/83 Free Space = 94,50K/ 180,00K Files = 0B/128B

Tvepe =3 8" Flopey Heads Density = DOUBLE Note - 1 Position = 1.,50K

BT

1. Disk size — The size of the floppy or hard disk.
2. Type of drive — Either floppy or hard.

3. Number of heads — The number of surfaces on the disk that
contain data for this logical drive.

4. Density — The density of the disk (SINGLE or DOUBLE).

5. Note — 1 Position = 1.50 K. — The amount of disk space in each
granule on the drive. The number of sectors per granule is the
amount of disk space multiplied by 4. This value will change
depending on the type of drive.

6. Detailed space allocation map — The organization of data on the
disk.

The numbers on the left represent the cylinders on the disk, and
these cylinders are divided into granules (grans). The grans for the
specified cylinders run across each line.

Each gran is represented by one of the following characters:

Unused — The gran is available for use.
+* Locked out — The gran is flawed and not available for use.
X Used — The gran is currently used for system or user files.
D Directory — The gran is used for the system’s directory files.

Examples
FREE

displays free space information about each enabled disk.
FREE :2 (PRT)

displays a free space map of the disk in Drive 0. The map is also sent
to the printer because you specified the PRT parameter.

1-98

Utility
HELP [filespec] [+][keyword] [(parameter)]

Displays information about TRSDOS keywords.

filespec is the file specification for the HELP data file you want to
access. Your TRSDOS system diskette contains one HELP data file,
DOS/HLP. The extension /HLP is optional.

keyword is the TRSDOS command, filter, or driver that you want
information for.

parameter specifies additional information for the HELP display. You
must enclose parameters in parentheses and separate them with
commas. Parameter may be any of the following:

P prints the information on the printer as well as the screen.

V cancels video restoration.

R cancels reverse video when displaying information on the
screen.

S displays only commands that match the command partspec
you indicate with keyword.

If you include keyword or parameter you must include filespec. HELP
does not recognize any characters after the word HELP except the
name of a HELP data file or an asterisk (*). ,

Some applications programs may have HELP data files for information
about the application. You can use an asterisk in the HELP command
line to indicate a global search for the keyword in all HELP data files.

The asterisk must immediately precede keyword.

If you type HELP at the TRSDOS Ready prompt, HELP displays a
reference menu. The menu shows possible syntax combinations you
can use with the HELP command from the TRSDOS Ready prompt.

The menu also lists the HELP data files currently on-line (available).
The HELP data files are called categories in the reference menu. The
menu displays the message:

Enter catedory or press <ENTER> to exit:

In response to this prompt, you can enter DOS or DOS keyword. You
can also include parameters.

If you press (ENTER) or (BREAK), HELP returns to the TRSDOS Ready
prompt. If you enter an invalid category or omit category, HELP
redisplays the reference menu.

1-99

When you enter DOS, HELP displays a list of all keywords available
in DOS, followed by the message:

Enter Kevword or press <“BREAK> to exit:

Enter the keyword that you want information for. If you press (BREAK),
HELP returns to the TRSDOS Ready prompt. If you press (ENTER),
HELP redisplays the list of keywords.

If you enter DOS keyword, HELP displays the information available in
DOS for that keyword and the message:

Enter Kevword or press <BREAK» to exit:

If the information for a keyword requires more than one screen, HELP
displays a message that you should press any key to see additional
information.

If you press BREAK), HELP returns to the TRSDOS Ready prompt. If
you enter another keyword, HELP displays the information available in
DOS about that keyword. If you enter an invalid keyword or press
(ENTER), HELP redisplays the list of keywords.

If an application program contains a HELP data file, you can enter
*keyword from the reference menu to perform a global search of all
HELP data files for category. When performing a global search, HELP
searches all available data files for keyword. While searching, HELP
displays the message:

Global Search in File: filename

When HELP finds the keyword in a data file, HELP displays the
keyword information on the screen and the message:

Press <BREAK:* to exit or <ENTER> to continue
Global Scan

If you press (ENTER), HELP continues the search for keyword in other
data files. When HELP completes the global search, HELP displays
the message:

Globkal Search in Filezfilename
END of Global Scan

Press <ENTER* to exit:

When you press (ENTER), HELP returns to the TRSDOS Ready
prompt.

Examples

At the TRSDOS Ready prompt type:
HELP

HELP displays the reference menu.

1-100

At the TRSDOS Ready prompt type:

HELP DOS
HELP displays the list of all keywords in the DOS file.
At the TRSDOS Ready prompt type:

HELP DOS ATTRIB

HELP displays a screen of information available for the ATTRIB
command and prompts you to press any key for additional
information. After you press a key, HELP displays additional
information and prompts you to enter another keyword or press
to exit.

1-101

LIB

Command
LiB

Displays a listing of all system commands in Libraries <A>, ,
and <C>.

You can use LIB to see a list of TRSDOS commands.

Library <A> contains the primary TRSDOS commands, Library
contains the secondary commands, and Library <C> contains the
machine-dependent commands.

Example
LI1B (ENTER

displays a list of the TRSDOS library commands.

Library <A>
Append Cat Cls Copy Device Dir Do
Filter Lib Link List Load Memory Remove
Rename Reset Route Run Set Tof

Library

Attrib Auto Build Create Date Debug Dump
Free Purge Time Verify

Library <C>
Forms Setcom Setki Spool Sysgen System
Technical Information

Library <A> is located in the SYS6/SYS system module, Library
 is located in the SYS7/SYS system module, and Library <C> is
located in the SYS8/SYS system module. You can remove any of the
three system modules if you will not be using their commands. (Use
the PURGE or REMOVE library commands to delete system
modules.)

1-102

LINK

Advanced Programmer’s Command
LINK devspec1 [TO] devspec2

Links together two logical devices; both must be enabled in the
system.

You can use LINK to get a printout of the data displayed on your
video display. You can also use LINK to write data displayed on the
screen to a disk file.

To “unlink” the devices, use the RESET command.

Be careful if you make several links to the same device. You could
create an endless loop and hang up the system.

Examples
LINK #DO #PR (ENTER

links the video display (*xDO) to the line printer (*PR). All output sent
to the display (devspecT) is also sent to the line printer (devspec2).

NOTE: Although all output to the video display is also sent to the
printer, any output sent individually to the printer (such as an LPRINT
from BASIC) is not sent to the video display. This is because the
order of the devices in the link command line is important. Once
linked, any information sent to devspec1 is also sent to devspec2,
and any information requested from devspec? can also be supplied
by devspec2. However, information sent to devspec2 is not sent to
devspec1, nor can information requested from devspec2 be supplied
by devspecT.

LINK #PR #DO (ENTER
links the line printer to the video display. All output sent to the printer
(devspec1) is also sent to the video display (devspec2).
Linking a Device To a File

It is not possible to directly LINK a device to a file. To link a device to
a file, follow this procedure:

e Use the ROUTE library command to create a “phantom”
device and route it to the file.

@ Link the device to the phantom device using the LINK library
command.

NOTE: Do not use the SYSGEN library command if you currently
have a device linked to a file. The linked file is shown as open every
time you power up or reset the system. You can overwrite other files
very easily if you switch disks with the linked file open.

1-103

The following example shows how to link your line printer to the disk
file PRINT/TXT on Drive 0 using a phantom device.

ROUTE #DU TO PRINT/TXT:0 (ENTER

creates the phantom device *DU and routes it to the disk file
PRINT/TXT on Drive 0. If PRINT/TXT does not exist, it is created. If it
already exists, data sent to the file is appended onto its end.

LINK #PR #DU (ENTER

links the printer to #DU, which in turn is routed to PRINT/TXT. All
output sent to the line printer is also sent to *DU (that is, written to
PRINT/TXT).

NOTE: PRINT/TXT remains open until you issue a RESET *DU
command. To break the link between the printer and PRINT/TXT
without closing the file, use the RESET *PR command. See the
ROUTE and RESET library commands; the “Using the
Device-Related Commands” section, and Appendices | and K.

Sample Use

Suppose you want your computer to be accessed by another
computer or terminal. If your computer is at the office you can use a
remote terminal as the keyboard and display of your Model 4. First,
set the Communications Line device (+*CL) and use SETCOM to
specify WORD =8 and PARITY =NO with the commands:

SET *CL 7O COoM/DVR (ENTER
SETCOM (WORD=8,PARITY=N0O) (ENTER

then issue commands:

LINK #D0O #CL
LINK #KI #CL

to link the video display and keyboard to the RS-232C interface. This
lets your Model 4 act as a “host” and be accessed by a remote
terminal via the RS-232C hardware.

While these links are in place, anything typed on the Model 4
keyboard or the remote terminal keyboard is treated as if it originated
at the Model 4 keyboard. Text displayed on the Model 4 screen is
transmitted to the remote terminal.

Note: Some programs display data using a direct access method.
This data is not displayed on the remote terminal. For more
information about direct access, see the Model 4 Technical
Reference Manual and the @VDCTL SVC.

1-104

LIST

Command
LIST filespec [(parameters)]

Lists the contents of filespec.

You can use LIST to see the contents of a file on a disk.
The parameters are:

ASCII8 displays the graphic characters and special characters in
a file, along with the text.

NUM numbers the lines in ASCII text files.

HEX specifies hexadecimal output format. When you specify the
HEX parameter, NUM and LINE are ignored.

TAB =number specifies that tab stops are to be placed every
number of spaces apart for ASCII text files. Each tab
character (hex 09) encountered causes a jump to the next
tab stop. The default value for number is 8.

PRT directs output to the printer.

LINE =number sets the starting line to number. If you omit the
LINE = parameter, TRSDOS uses 1. This parameter works
only with ASCII files.

REC =number sets the starting record number to number. If you
omit the REC= parameter, TRSDOS uses 0. The REC=
parameter is used only with the HEX parameter.

LRL =number sets the logical record length to be used to display
a file with a record length of number. If you omit the LRL =
parameter, TRSDOS uses the logical record length of the
file. The LRL= parameter is used only with the HEX
parameter.

LINE cannot be abbreviated, and the abbreviation for ASCII8 is A8.

If you omit a file extension with LIST command, TRSDOS looks for
the filename with the extension /TXT. If TRSDOS cannot find the
filename with the /TXT extension, it looks for filename. If you specify
filename with the extension / you can eliminate the search for
filename/TXT.

Press (SHIFD(@) to pause a list. Press any key to continue. Press
BREAK) to abort the list.

When you use the HEX parameter, filespec is listed in the following
format:

P 9

Qp00:00 = 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F S@ ABCDEFGH IJKLMNOP
@ep0:10 = 51 52 53 54 55 56 37 S8 59 5A 0D QARSTUVKWY YZ.

1-105

1. Current logical record of the file in hex notation, starting with
record 0.

2. Offset from the first byte of the current logical record (in hex
notation).
3. Hex representation of the byte listed.

4. ASCII representation of the byte. A period is used for all
non-ASC |l bytes.

Examples
LIST TESTFILE:0® (ENTER

searches Drive 0 for TESTFILE/TXT. If not found, it searches for
TESTFILE.

LIST MONITOR/CMD (HEX,LRL=8)
lists MONITOR/CMD in the hexadecimal mode using an LRL of 8.
LIST REPLY/TXT (NUM,TAB=10,P) (ENTER

prints a listing of REPLY/TXT on the printer, numbering each line that
is printed. Lines are numbered beginning with 00001. Any tab
character encountered causes a jump to the next tab position (every
10th column).

LIST TESTFILE/OBJ (HEX,REC=5) (ENTER
list TESTFILE/OBJ in the hex mode, beginning with record 5.
Sample Use

Suppose you used BUILD to create a file named HEXFILE/TXT which
contains hexadecimal characters that are not available from the
keyboard. Issue the command:

LIST HEXFILE/TXT (ENTER
and the special characters are displayed on the screen.

1-106

LOAD

Advanced Programmer’s Command
LOAD [(parameter)] filespec

Loads a machine-language program file (without executing it) and
then returns to TRSDOS Ready.

You can use LOAD to pre-load assembly language routines that
programs written in a language such as BASIC can call.

The parameter is:
X loads a file from a non-system disk.

The file must be in load module format. Do not use it to load BASIC
program files. The default file extension for the LOAD command is
/CMD.

Programs to be loaded must reside at or above the address X'3000'.
Examples

LOAD STATUS/CHMD
loads the file STATUS/CMD into memory.

LOAD (X) PROGRAM/CIM (ENTER)

loads PROGRAM/CIM from a non-system disk. The system prompts
you to insert the disk with the desired file on it with the message:

Insert SOURCE disk (ENTER

After the file is loaded, you are prompted to put the system disk back
in Drive 0 with the message:

Insert SYSTEM disk (ENTER
The load is now complete.
Sample Use

Often several program modules must be loaded into memory for use
by a master program. For example, suppose PAYROLL/PT1 and
PAYROLL/PT2 are modules, and MENU/CMD is the master program.
Then you could use the commands:

LOAD PAYROLL/PT1 (ENTER
LOAD PAYROLL/PTZ (ENTER

to get modules into memory, and then type: MENU to load and
execute MENU.

1-107

Utility
LOG :drive

Allows you to change from one type disk to another type.
:drive may be any enabled drive in your system.

LOG is most useful when you want to change system diskettes, but
you do not want to reset the system. You can use LOG/CMD to
change to or from a double-sided disk, a minimum system disk, or a
full system disk. To change operating systems or to change versions
of an operating system, you must press reset.

After entering the LOG command, if you are changing systems
diskettes in Drive 0, TRSDOS displays the message:

Exchange disks and derpress <ENTERX

When TRSDOS displays this message, remove the diskette in Drive
0. Insert the new diskette and press (ENTER). TRSDOS is now aware
of the fact that Drive 0 contains a different type of system diskette.

If you specify a drive other than Drive 0, LOG detects whether the
diskette is single- or double-density, which cylinder contains the
directory, the number of cylinders on the diskette, and whether the
diskette is single-or double-sided.

1-108

MEMORY

Advanced Programmer’s Command
MEMORY [(parameters)]

allows you to reserve a portion of memory, display or change the
current HIGH$ and LOWS$, modify a memory address, or begin
executing at a specified memory location. HIGH$ has to be higher
than LOWS.

You can use MEMORY to find out which area of memory you can use.
The parameters are:

CLEAR =value fills memory from hex 2600 to HIGH$ with value.
value in the format X’'nn’. If you do not specify value,
memory is filled with the hexadecimal value 00 (null).

HIGH = address resets HIGH$ to the address you specify.
address must be less than the current value of HIGHS.
When you reset HIGH$, TRSDOS inserts a high memory
header into memory. TRSDOS places the header in the last
10 bytes preceding the address you specify. TRSDOS
displays a message informing you that the header is in
memory.

LOW =address resets LOWS to the address you specify. address
must be greater than Hexadecimal 25FF. If you omit
address, TRSDOS displays the current value of LOWS.
Subsequent MEMORY or system level commands reset
LOWS to its default value of Hexadecimal 2600.

ADD =value displays or modifies a byte or word of memory. value
can also be a memory address or an alphabetic character A
through Z, specifying a TRSDOS flag in the system flag
table. See the Model 4/4P Technical Reference Manual for
additional information on the status flag table. If you include
the WORD or BYTE parameters, ADD modifies the address
or flag that you specify with value. If you omit WORD and
BYTE, ADD displays the address or flag that you specify
with value.

WORD =word changes the contents of ADD and ADD + 1 to
word.

BYTE = byte changes the contents of ADD to byte.

GO =address transfers control to address. If more than one
parameter is specified, the GO parameter is always
executed last.

address is any memory address in hexadecimal or decimal notation.
word is any value in the range 0000 - FFFF hexadecimal or 0 - 65535
decimal. byte is any value in the range 00 - FF hexadecimal or

0 - 255 decimal.

1-109

Examples
MEMORY (ENTER)

displays HIGH$ (the highest unused memory location) and LOW$ (the
lowest reserved memory location) in the hexadecimal X'nnnn’ format.

MEMORY (HIGH=X'E10@ ‘) (ENTER

sets HIGHS to hexadecimal memory address E100, as long as the
existing HIGH$ is above X’E100’. The MEMORY command moves
HIGH$ lower in memory.

MEMORY (ADD=X'6500) (ENTER

displays the contents of hexadecimal memory addresses 6500 and
6501 in the following format:

o "’B'WHD’ = 23836 (X'674% ") /.
High =X'E1080' Low = X'2FFF’

The address specified in hexadecimal notation.

The decimal equivalent of the address.

The contents of address and address + 1, in MSB-LSB format.
The current HIGH$ address.

The current LOWS$ address.

MEMORY (ADD=X'E1@00’:WORD=X'3E0A ‘) (ENTER)

modifies hexadecimal memory locations ADD (E100) and ADD + 1
(E101), changing them to the value of WORD. The following display

appears:
X/E100' = 57800 (x'edee’ => x'3eear) ()

Hidh = X'E100' Low = X'ZFFF

G WON—

The address specified in hexadecimal notation.

The decimal equivalent of the address.

The old contents of address and address + 1, in MSB-LSB
format.

The new contents of address and address + 1, in MSB-LSB
format.

The current HIGH$ address.

The current LOWS$ address.

[e)é;] £ WN =

1-110

MEMORY (ADD=X'E10®’:BYTE=X'C8") (ENTER

changes the BYTE of memory at hexadecimal address E100 to
hexadecimal C9. The display after executing this command is:

K/E1Q@' = 37600 (X900’ =x X'C8")
High = X'E10@’ Low = X'ZFFF’

The display is identical to the last example, except that the command
modified a BYTE instead of a WORD.

MEMORY (GO"X'E1@0 ‘) (ENTER
transfers control to hexadecimal memory address E100.
Error Conditions

If you specify an address for LOW that is equal to or greater than the
address for HIGH, TRSDOS displays a “Range error” message.
TRSDOS also displays this message if you attempt to set HIGH
greater than the current value of HIGH or if you attempt to set LOW
less than X'2600’.

Some applications programs set a bit in CFLAG$ that does not allow
you to alter HIGH$ or LOWS. If you attempt to alter these values
when this bit is set, TRSDOS displays a “No memory space
available” error message. The application program must reset the bit
in CFLAGS$. See the Model 4/4P Technical Reference Manual for
additional information on CFLAGS.

1-111

PATCH

Method A

Advanced Programmer’s Utility
PATCH filespec (patch commands)

Method B

Advanced Programmer’s Utility
PATCH filespec1 USING filespec2 [(parameters)]

Lets you make minor corrections in any disk file by (1) typing in the
patch code directly from the command line (Method A), or (2) creating
an ASCII file containing patch information (Method B).

You can use PATCH to make minor changes in your own
machine-language programs. You need not change the source code,
reassemble it, and recreate the file. You can use PATCH to make
minor replacement changes in data files, also.

filespec1 is the file to be changed and /CMD is its default extension.
filespec2 contains the patch commands. filespec2 can contain only
ASCII characters and /FIX is its default extension.

The patch commands are:

address = value identifies the PATCH as a patch by “memory load
location.” It changes the contents of memory beginning with
address to value.

Drecord,byte = value identifies the PATCH as a “direct modify
patch.” record tells which record contains the data to be
changed. It is a hexadecimal number from 00 to FF. byte
specifies the position of the first byte to be changed. It is a
hexadecimal number from 00 to FF.

Frecord,byte = value lets you make sure that a patch is applied to
the correct place in memory, when used in conjunction with
the D patch command. Frecord,byte follows Drecord,byte. If
the location specified with the D patch command does not
contain the data specified with Frecord,byte , the PATCH
aborts. Frecord,byte is also used with the REMOVE
parameter to remove a patch and replace it with the original
data.

Lcode identifies the PATCH as a “library mode patch.” The
PATCH applies to either the SYS6/SYS, SYS7/SYS, or
SYS8/SYS library command module. code is the binary
coded location in the format nn where the change begins.

address is a four-digit hexadecimal value in the format X’nnnn’ which
is the memory load address for the change.

1-112

value can be either a series of hexadecimal bytes in the format nn nn
nn..., or a string of ASCII characters in the format “string.”

The parameters are:

YANK removes the PATCH specified by filespec2 from filespec1.
The specified PATCH contains code in the address format.

REMOVE removes the PATCH specified by filespec2 from
filespec1. The specified PATCH contains code in the
Drecord,byte format.

An address patch command changes a file by “memory load
location.” It adds the patch code to the end of the filespec and then
makes the changes beginning at address each time the file is loaded.
You can use YANK to remove the added code from filespec. This type
of patch can be applied only to files that can be loaded with the LOAD
or RUN library command.

A Drecord,byte:Frecord,byte patch command changes a file by
“direct modify patch.” It changes a file by directly applying the patch
code to the specified record and byte of filespec. When you BUILD a
file containing patch commands in this format, you can REMOVE the
patch.

An easy way for you to find the record and byte of filespec that you
want to patch is to list filespec using the LIST library command with
the HEX parameter. Remember that the first record in a file is record
0, not record 1.

Lcode patch command patches are supplied by Radio Shack for you
to implement changes to TRSDOS. You have to BUILD a patch file to
apply this type of PATCH.

You can specify more than one line of patch code from the command
line by placing a colon (:) between the lines of patch code.

Examples

These examples are used to show the syntax and development of the
PATCH command, so do not execute them.

PATCH MONITOR/CMD (X'E1@@°=C3 BG6 @0 CD 03 4@
ENTER

patches the file MONITOR/CMD by the memory load location method.
The six bytes beginning at hexadecimal E100 are changed. During
the PATCH operation, the following message is displayed:

Installing Patch
When the operation is completed, this message appears:

Patch function completed
¥ Ppatch lines installed

x is the number of lines of patch code that were installed.

1-113

Since there is no filespec used for the patch code, the name CLP
(Command Line Patch) is assigned to the patch code. You can use
this name to later YANK the patch from MONITOR/CMD.

Error Conditions

If you omit filespec in a PATCH command, TRSDOS displays a
“PROGRAM file name required” error message. Include filespec and
try the command again.

If you misspell filespec, TRSDOS displays a “File not in directory”
error message. Check your spelling and try the command again.

If you attempt to YANK an X patch that is not in the file, TRSDOS
displays a “Can’t yank, patch not in load file” error message.
TRSDOS also displays this message if you attempt to YANK a patch
that was applied to the same file more than once and has been
previously yanked.

If you specify an incorrect overlay number in an L patch to SYS8,
SYS7, or SYS8, TRSDOS displays a “Library overlay not found” error
message.

If there are errors in the /FIX file, TRSDOS may display any of the
following error messages:

“Invalid library format”
“Patch input format error”
“Non-hex digit encountered”

If the file in an X patch is not in load file format, TRSDOS displays a
“Load file format error” message.

IF the /FIX file is too large, TRSDOS displays a “Fix file too big —
partition it” error message. You must split the file into more than one
file.

Examples
Using BUILD To Create a PATCH File

You can use the BUILD library command to create a PATCH file. (See
the “Building a File” section of the BUILD library command.) A PATCH
file can contain only ASCII characters.

Each line in a patch file is either a patch command or a comment.
Comment lines begin with a period and are ignored by the patch
utility. Use comments in patch files to document the changes that you
make. You can append a comment onto the end of a patch command
by using a semicolon to separate the two parts.

You can also use SCRIPSIT to create a PATCH file. When you create
a PATCH file with SCRIPSIT, use the S,A type of save. SCRIPSIT
sometimes leaves extra spaces after the last carriage return in a file.
To remove the extra spaces, position the cursor just after the last
carriage return in the file and do a delete to end of text.

1-114

These examples are used to show the syntax and development of the
PATCH command, so do not execute them.

PATCH BACKUP/CMD:@ USING SPECIAL/FIX (ENTER

The data in BACKUP/CMD on Drive 0 is changed to 23 3E 87
beginning at hexadecimal 6178. The data beginning at hexadecimal
61A0 is changed to FF 00 00. This is an example of a memory load
location patch, and since the patch is added onto the end of
BACKUP/CMD, you can use the YANK parameter to remove it.

Use the BUILD library command to create the following PATCH file
named TEST/FIX:

.This patch modifies the SYS2 module.
D0B,49=EF CD 44 65:F0B,49=DD 3A 33 44
D0B,55=C3 00 00:F0B,55=EF 44 55

.End of patch

Now, type in the command line:
PATCH SYS82/5YS.PASSWORD USING TEST/FIX (ENTER

changes the data specified in SYS2/SYS.PASSWORD to the data in
TEST/FIX. Since the data beginning at record 0B, byte 49 and 55 is
directly changed on disk, this is an example of a direct disk modify
patch. The Find patch commands let you make sure you are patching
the correct place in memory.

Using PATCH on a TRSDOS System File

When Radio Shack releases a modification to TRSDOS, you receive a
printout of the exact patch commands that you must use to make the
change.

Suppose Radio Shack sends you the patch information for a file
named LIB1 that contains the following patch code:

.USE LIB1 TO PATCH SYS6/SYS.
L54
X’5208' =32 20 DE AF 00 C3 66 00

Use the BUILD library command to create the file LIB1, and type in
the lines exactly as they appear on the printout. After you end the file,
type in the command line:

PATCH G¥SG/5YS:1 USING LIB1 (ENTER

This changes the data specified in SYS6/SYS on Drive 1 to the data
in LIB1/FIX. Since you did not specify an extension to LIB1, it
defaulted to /FIX. This patch is in the memory load location mode.
Library patches can also be done with the direct disk modify mode. To
be sure that you do not patch the disk in Drive 0, specify the drive
number in the filespec (such as SYS6/SYS:2) or write protect the disk
in Drive 0.

1-115

PATCH lets you implement any changes to TRSDOS that may be
supplied by Radio Shack. This way, you do not have to wait for a new
release of TRSDOS.

To make a Radio Shack change, follow these general steps:
1. Make a backup copy of the diskette to be patched.

2. Insert the TRSDOS diskette to be changed into one of the drives.
(Make sure the diskette is “write-enabled.”)

3. In the TRSDOS mode, use the BUILD library command to create a
PATCH file containing the patch commands specified in the
information provided by Radio Shack.

4. Issue the appropriate PATCH command.

5. After the patch is complete, test the patched diskette in Drive 0 to
see that it is operating as a TRSDOS system diskette. You have to
reset the computer before you can test the diskette.

1-116

PURGE

Command
PURGE [partspec]:drive [(parameters)]

Deletes files from the disk in drive.

You can use PURGE to remove all or some of the files on a disk with
one command.

If you don’t know the file's password but you know the disk’s master
password, PURGE provides a way to delete the files. With the
REMOVE command you must know the file password to delete a file.
With the PURGE command, you must specify the disk’'s master
password unless the master password is PASSWORD.

The parameters are:

QUERY =NO automatically removes files without prompting for
each one.
MPW = “password” states the disk master password.
INV removes the invisible files as well as the visible files.
SYS removes the system files as well as the visible files.
DATE =“M1/D1/Y1-M2/D2/Y2" removes the files with modify
dates between the two specified dates, inclusive.
=“M1/D1/Y1” removes the files with modify dates equal to
the specified date.

=“-M1/D1/Y1” removes the files with modify dates before or
equal to the specified date.

="“M1/D1/Y1-" removes the files with modify dates after or
equal to the specified date.

Before using the PURGE command, you can see which files will be
purged by executing a DIR command with the same parameters.

Once you enter the PURGE command, TRSDOS prompts you for the
disk’s password (if it is not PASSWORD), unless you specified it with
the MPW parameter.

Then, the system displays the files one at a time. It prompts you to
remove the file or keep it. Respond with to remove the file, or
ENTER) to keep it.

NOTE: BOOT/SYS and DIR/SYS cannot be purged and do not
appear during execution of any PURGE command.

Examples
PURGE :@ (MPW="SECRET") (ENTER

purges ALL files from Drive 1. You are not questioned before each file
is removed, as QUERY is specified as NO. Be careful with this

1-117

command because it erases all data on the specified drive. To erase
all files from a disk, we recommend that you re-format the disk with
the FORMAT command.

PURGE /BAS:1 (Q=N0) (ENTER

purges all visible files with the extension /BAS. You are not
questioned before each file is removed, as QUERY is specified as
NO.

PURGE /4%%$5:2 (ENTER

purges all visible files on Drive 2 whose file extension contains 3
characters and ends in the letter S.

PURGE -/CMD:® (INV) (ENTER

purges all non-system files from Drive 0 except those with the
extension /CMD.

PURGE :1 (DATE="@2/01/81-") (ENTER

purges all visible files on Drive 1 with modify dates of February 1,
1981 or later. You are questioned before each file is removed.

Error Conditions

When you use a PURGE command in a JCL file you must specify the
QUERY = OFF parameter. If you omit this parameter, TRSDOS
displays an “Invalid command during <DO> processing” error
message.

If you specify the wrong password, TRSDOS displays an “Invalid
master password” error message. If the master password is not
PASSWORD, you must specify it to PURGE a file.

Sample Use

Refer to the Sample Use example in the BACKUP command section.
Now that you have moved all of the new files to the disk in Drive 1,
you can remove all the new files on the disk in Drive 0 by issuing the
command:

PURGE /NEW:? (ENTER

Now you have two separate disks: one with new employee files on it
and one with old employee files on it.

1-118

REMOVE

Command
REMOVE filespec [filespec ...]
REMOVE devspec [devspec ...]

Deletes filespec from the directory and frees the space allocated to it,
or deletes devspec from the device table.

You can use REMOVE to delete a file that you don’t need to use
anymore. You can also REMOVE a device that is no longer needed.

Examples
REMOVE ALPHA/DAT:® BREAKER/DAT:2 (ENTER

deletes ALPHA/DAT and BREAKER/DAT from the directory on Drive 0
and frees all space allocated to them.

REMOVE MIDWEST/DAT.SECRET (ENTER

deletes MIDWEST/DAT. If the file is protected at a level of RENAME
or higher, the owner password must be used to remove the file. If you
supply the user password, the error message “lllegal access
attempted to protected file” is displayed. If you supply the wrong
password, the error message “File access denied” is displayed.

REMOUVE #LU (ENTER
removes the user-created device %LU from the device table.

NOTE: A device can be removed only if it is pointed NIL in the device
table. If a device is not pointed to NIL, it must first be reset with the
RESET library command before it can be removed.

TRSDOS does not permit the removing of the system devices: #JL,
#Kl, *DO, #Sl, *SO, and *PR. Attempting to remove these devices
produces the error message “Protected system device.”

Sample Use

Suppose you have a file of temporary employees that you hire for
inventory. All of the temporary employees’ files are in a file named
EMPLOYE/TEM. When you complete inventory, you can remove this
file with the command:

REMOVE EMPLOYE/TEM (ENTER

1-119

RENAME

Command
RENAME filespec1 [TO] filespec2
RENAME devspec1 [TO] devspec2

Changes a file’s name and/or extension from filespec1 to filespec2. It
also changes a device name from devspec? to devspec2.

You can use RENAME to change the name of a file or a device.

If you wish to rename a file that contains an extension to a filename
that does not contain an extension, you must include the slash (/) in
the new file name. If you omit the slash, TRSDOS assumes the
extension of the source filename for the destination filename.

RENAME does not change the file’s password, contents, or position
on the disk. (See the ATTRIB command to change the password.) If
filespec1 is password protected, the password must be specified or
an error message will result.

RENAME does not change a device’s routing, filtering, linking, or
setting. devspec? must be an existing device, and devspec2 must be
an unused device name.

You cannot RENAME the system devices: *Kl, *DO, *PR, *SI, *SO,
and *JL.

Examples
RENAME TEST/DAT:® TO OLD/DAT (ENTER
renames TEST/DAT on Drive 0 to OLD/DAT.
RENAME TEST/DAT:® TO REAL (ENTER)

renames TEST/DAT on Drive 0 to REAL/DAT. Since you did not
specify an extension for filespec2, it defaulted to the extension on
filespec1 (DAT).

RENAME TEST/DAT:® TO REAL/ (ENTER
renames TEST/DAT on Drive 0 to REAL (without an extension).
RENAME DATA/NEW,SECRET:1 TO /0LD (ENTER

renames the password protected DATA/NEW.SECRET on Drive 1 to
DATA/OLD.SECRET. Since you did not specify a filename for
filespec2, it defaulted to that of filespec1. RENAME does not change
or delete passwords, so the password defaulted also.

RENAME #UD TO #TX (ENTER
renames the device *UD to *TX.

1-120

Error Conditions:

If you attempt to rename a file to a filename that already exists on
that diskette, TRSDOS displays a “Duplicate file name” error
message.

If you specify an illegal filespec or attempt to use devspec and
filespec in the same RENAME command, TRSDOS displays a
“Specification error” message.

If you omit the destination filespec or devspec, TRSDOS issues a
“Rename it to what?” error message. You must specify source and
destination filespecs and devspecs.

1-121

Utility
REPAIR :drive

Updates and modifies information on floppy disks produced on other
Radio Shack operating systems and computers so TRSDOS Version 6
can use them.

drive is any floppy drive currently enabled in the system (except
Drive 0).

After REPAIR is complete, you should be able to copy any file off the
modified diskette.

Use REPAIR to read any disk formatted by any disk operating system
other than TRSDOS Version 6, LDOS 5.1.3, or their successors.

Once a disk is modified by TRSDOS, the operating system that
created it may not be able to read it.

TRSDOS 1.2 and 1.3 disks should NEVER be repaired. Use the
CONYV utility to copy programs from them.

Using REPAIR, you can convert the following list of operating system
diskettes to TRSDOS Version 6 diskettes:

® Model | TRSDOS 2.0, 2.1, 2.2, 2.3, 2.3a
Examples
REPAIR :1 (ENTER

updates information on the diskette in Drive 1 so that TRSDOS can
use it.

Error Conditions

TRSDOS assumes that Drive 0 always contains a valid system disk. If
you attempt to REPAIR a diskette in Drive 0, TRSDOS displays a
“Can’t REPAIR Drive 0" error message. You must have at least two
drives to use REPAIR.

1-122

Advanced Programmer’s Command
RESET devspec
RESET filespec

Returns a devspec to its original start-up condition. Closes an open
filespec.

You can use RESET to set a system device to its normal condition in
the DEVICE table. You can also use RESET to close a file that has
not been properly closed.

Resetting a Device

A RESET devspec command removes any filtering, linking, or routing
that has been set to the device. Any open disk file that is connected
to the device is closed.

If devspec is a device you created (see the LINK and ROUTE library
commands), it is pointed at NIL when reset.

If devspec is a system device (+KI, *DO, *#PR, *SI, *SO, and *JL), it
returns to its start-up condition when reset.

To see that devspec has been pointed at NIL or returned to its

start-up condition, issue a DEVICE library command and examine the
device table that is displayed.

You can use the REMOVE library command to remove the device
from the device table once it points at NIL.

Example

Suppose you have used the FORMS command to specify printer
parameters, or you have filtered, linked, or routed *PR.

RESET *PR (ENTER
returns *PR to its start-up condition and disconnects the printer filter.

Resetting a Filespec
You can RESET an open filespec that has not been properly closed.

Improperly closed files result when (1) your system loses power and
files are left open, (2) you remove a disk from a drive and files are left
open, or (3) you reset your system while files are open, or (4) a
command aborts while files are open.

To see if any files on a disk are not properly closed, issue a DIR
library command. Any file that appears with a question mark (?) after
it needs to be RESET before you can access it. Receiving the error
“File already open” may also indicate a file is not properly closed.

1-123

Example

Suppose that your system lost power and there is a file named
PRINTER/DAT that is not properly closed.

RESET PRINTER/DAT (ENTER
closes the file named PRINTER/DAT and lets you access it.

1-124

ROUTE

Advanced Programmer’s Command
ROUTE devspec? [TO] devspec2
ROUTE devspec1 [TO] filespec [(REWIND)]
ROUTE devspec1 (NIL)

Routes devspeci to one of the following:
@ another device (devspec2)
@ a disk file (filespec)
@ nothing (NIL)

You can use ROUTE to create a device. You can also use ROUTE to
alter the flow of data from one device to another.

If devspec1 does not already exist, ROUTE creates it.

To see how your devices are routed, use the DEVICE command. To
return the non-system devices to their normal start-up state, use the
RESET and REMOVE commands.

Examples
ROUTE #*PR #*DO

routes the printer (*PR) to the video display (*DO). All data normally
sent to the printer will be displayed on the screen.

ROUTE *#PR TO PRINTER/DAT

routes the printer (*PR) to a disk file (PRINTER/DAT). All data
normally sent to the printer will be stored in a disk file named
PRINTER/DAT. If PRINTER/DAT already exists, the data is appended
to the end of the file.

RESET #*PR

closes the PRINTER/DAT file and any subsequent output to PR
goes to the printer. The PRINTER/DAT remains open until you
execute the above command.

ROUTE #PR TO PRINTER/DAT (REWIND)

routes the printer to PRINTER/DAT. If PRINTER/DAT already exists,
the system “rewinds” the file to the beginning. The contents of the file
will be replaced with the new printer data.

ROUTE #PR (NIL)
routes *PR to NIL. TRSDOS ignores all output to the printer.
ROUTE #DU TO TEST/TXT:1
routes a user device (*DU) to a disk file named TEST/TXT in Drive 1.

1-125

If you ROUTE #CL to a file and you are receiving data from a
communications line (+CL), you might lose data if it is coming in at a
high speed. If so, use CREATE to preallocate file space before using
ROUTE. This makes data loss less likely because the system no
longer has to spend the time allocating more space.

Error Conditions

If you misspell devspec?2 or specify a device that doesn’t exist
TRSDOS issues the error message “Device not available.” Check
your spelling and try again.

If there are too many devices or routes, TRSDOS issues a “No
memory space available” error message. TRSDOS also issues this
error message if an application program sets Bit 0 of CFLAGS$. The
application program must reset the bit in CFLAGS$. See the Mode/
4/4P Technical Reference Manual for additional information on
CFLAGS.

Sample Use

Suppose you want to route a report-producing program to a file
(instead of printing the report). Issue the command:

ROUTE #PR TO REPORT/DAT (ENTER

Now you can run the program and the report that it produces is routed
to the file REPORT/DAT. This means that you can print the report in
the file REPORT/DAT whenever you want by using the LIST
command.

NOTE: Remember, you must reset *PR before listing the file so that it
will be properly closed.

1-126

tna

L

g

JHE

RUN

Command
[RUN] [(X)] filespec [command text]

Loads a program named filespec into memory and executes it.
You can use RUN to execute a program.

Typing RUN is optional. You can load and execute a program from

the TRSDOS Ready prompt by simply typing in the name of the
program (without the RUN).

The default extension for filespec is CMD.

X executes a program from a non-system disk for the single drive
user.

Command text is an optional value which the program you specified
may require.

When running a program, observe the following address restrictions:

RUN filespec must load above X2FFF'.
RUN (X) filespec must load above X'2FFF'.
Examples

RUN CONTROL/CMD
loads a program named CONTROL/CMD and executes it.
CONTROL/CMD
loads a program named CONTROL/CMD and executes it.
RUN PROG

loads a program named PROG/CMD and executes it. Since you did
not supply a file extension, it defaulted to /CMD.

RUN (X)) TRADERS/CMD:® (ENTER

loads TRADERS/CMD from a non-system disk. First you are
prompted with the message:

Insert SOURCE disk (ENTER

Insert the disk containing the program into Drive 0 and press (ENTER).
After the program is loaded into memory, you are prompted with:

Insert SYSTEM disk (ENTER

Insert the system disk back into Drive 0 and press (ENTER); program
execution begins.

1-127

SET

Advanced Programmer’s Command
SET devspec [TO] filespec [USING] [parameters]

Loads a driver of filter program into memory and sets it to a device.

devspec can be a system device or a phantom device (non-existing
device). If you specify a phantom device, you must use the FILTER
command to connect the phantom device to a system device.

filespec can be a TRSDOS filter program, your own filter program, or
a TRSDOS driver program.

parameters are values sent to the driver of filter program. They are
totally independent of the SET command and determined only by the
needs of your driver of filter program.

A driver program channels data to or from a device. If it is outputting
to a device, it converts data to the device’s format. If it is inputting
from a device, it converts the data to the computer’s format.

A filter program filters data before it is sent out or after it is received.

Once the device is SET, it remains SET until it is RESET. You cannot
SET an active device.

See Appendix | for a complete list of TRSDOS filters and drivers. See
Appendix K for more examples of setting devices, drivers and filters.

Example

Within TRSDOS is a driver program that sends printer output to the
parallel port. Suppose you write a driver program named SERIAL/DVR
that sends printer output to the serial port.

SET #5P TO SERIAL/DVR (ENTER
loads SERIAL/DVR into memory and sets it to the device *SP.
ROUTE #*PR TO *SP (ENTER

routes data going to the printer to the device *SP. Now any input to
the printer goes to the SERIAL/DVR program. The SERIAL/DVR
program, in turn, sends the output to the serial port.

By using a LINK command instead of the ROUTE command, data
sent to *PR is sent to the TRSDOS parallel printer driver. It is also
sent (via the LINK) to the serial driver and then to the serial printer.

Example

Suppose you write a filter program named TRAP/FLT to change some
characters sent to *DO, the video display.

1-128

First, you need to load your TRAP/FLT program and set it to a
phantom device (this example uses *LC as the name of the phantom
device):

SET #LC TO TRAP/FLT
This causes *LC to point to TRAP/FLT.

Then, you need to use *LC (which points to the TRAP/FLT program)
to filter the data output to the video display:

FILTER #DO =LC (ENTER

Now, all data output to the video display is filtered through your filter
program.

SET #DU KSM/FLT USING FILEDAT/KSHM (ENTER
FILTER #KI =DU (ENTER

loads the Keystroke Multiply filter into memory and sets it to the
keyboard.

Error Conditions

If there are too many devices or routes, TRSDOS issues a “No
memory space available” error message. TRSDOS also issues this
error message if an application program sets Bit 0 of CFLAGS$. The
application program must reset the bit in CFLAGS$. See the Model
4/4P Technical Reference Manual for additional information on
CFLAGS.

1-129

Advanced Programmer’s Command
SETCOM [(parameters)]

Adjusts the parameter values of the RS-232C driver program
COM/DVR. Before you can use SETCOM, you have to install the
driver using the SET command (see Appendix |).

You can use SETCOM to adjust your computer so that it can
communicate with another computer or a piece of computer
equipment.

The RS-232C port lets you communicate with:
@ another computer
© a modem
® a serial printer

You can include parameters to configure the RS-232C port and
establish line conditions. If you omit parameters, TRSDOS displays
three lines of information about the current parameter settings, and
input and output line conditions.

The parameters are:

DEFAULT returns all parameters to their start-up values.

BAUD = number sets the BAUD rate to any supportable rate.
number can be 110, 135, 150, 300, 600, 1200, 2400, 4800,
9600. The default value for BAUD is 300.

WORD = number sets the word length to number. number can be
5, 6, 7, or 8. The default value for number is 7.

STOP =number sets the number of stop bits per word.
number is either 1 or 2. The default value for number is 1.

QUERY prompts you for each parameter.

BREAK=value sets the character that COM/DVR recognizes as
a BREAK function. value may also be Y or N. Y sets the
BREAK value to Hexadecimal 03 ((CONTROL) (C)). N sets
the BREAK value to Hexadecimal 80 (BREAK). If you
specify 0 for value, COM/DVR does not recognize any
character as a BREAK.

PARITY =switch sets parity. switch can be ON, OFF, EVEN, or
ODD. You must enclose EVEN and ODD in quotes.

ON enables parity and retains its previous value, EVEN or ODD.

OFF disables parity.

EVEN enables parity and establishes EVEN parity

ODD enables parity and establishes ODD parity.

BREAK cannot be abbreviated.

1-130

Examples

SETCOM (ENTER

displays the current configuration of the RS-232C port in the following
format:

RS232 parameters:

Baud =300
Word Length =7
Stop Bits =1
Parity =0ON
Even =0ON

Break value =X03
Output control line status:

DTR=0ON
RTS =OFF
Input control line conditions observed:
RI =|GNORE
DSR =IGNORE
CD =IGNORE
CTS =IGNORE

SETCOM (BAUD=300:;WORD=8,STOP=1, PARITY=ND) (ENTER

configures the RS-232C using the values specified. Notice that
PARITY is specified as NO.

Technical Information

This command allows you to set the parameters to values that match
any other RS-232C devices. The receiving side of the driver is
interrupt driven and contains an internal one-character buffer to
prevent loss of characters during disk 1/0 and other lengthy
operations. The system usually uses the *CL devspec to
communicate with the RS-232C port.

If you are using a serial printer, (1) use SET to set *CL to COM/DVR
(see Appendix I), (2) use SETCOM to set the proper parameters, and
(3) use the command:

ROUTE *PR TO #CL (ENTER)

to direct output to the RS-232C (rather than the standard parallel
port). Radio Shack printers do not require this procedure since they
use the parallel printer port.

The line condition parameters let you set up the conventions required
by most communicating devices.

1-131

The RS-232C line output parameters are:

DTR =switch Data Terminal Ready
RTS =switch Request To Send

The RS-232C line input parameters are:

DSR = switch Data Set Ready
CD =switch Carrier Detect
CTS =switch Clear To Send
Rl =switch Ring Indicator

switch is either YES or NO. You cannot abbreviate any of the
RS-232C line parameters.

As specified by standard RS-232C conventions, a TRUE condition
means a logical 0, or positive voltage. A FALSE condition means a
logical 1, or negative voltage.

DTR and RTS can be set to a constant TRUE by specifying the YES
switch. If DSR, CD, CTS, or Rl is specified YES, the driver observes
that signal and waits for a TRUE condition before sending each
character. If specified NO, the driver waits for a false condition before
sending a character. If not specified, that signal is ignored.

The BREAK parameter allows you to set a logical BREAK character.

This is useful in “host” type applications. The BREAK parameter
causes the serial driver to set the system break bit whenever a
modem break (extended null) or an ASCII logical BREAK is received.
The system pause bit is set whenever the hex code 60 is received.
The system enter bit is set whenever a carriage return (0D) is
received.

The default for BREAK is 3, so a (CONTROL)(C) sets the break bit.
Use BREAK = value to set another character as the logical break.

Technical Examples
SETCOM (BREAK) (ENTER
configures the RS-232C port to the default values. Specifying BREAK

with no value assigns the default value of 3 as the logical break value.

SETCOM (CTS) (ENTER

configures the RS-232C port to the default values. Because CTS is
specified, the driver looks at the CTS line for a TRUE condition before
it sends a character.

Error Conditions

If you do not install COM/DVR in memory with the SET command
before you issue a SETCOM command, TRSDOS displays a
“COM/DVR not installed” error message.

1-132

Sample Use

Suppose you want to log-on to CompuServe. First, you have to SET
*CL to COM/DVR, and then you have to use SETCOM to set the
parameters of the RS-232C port so that your Model 4 can
communicate with CompuServe. See the Logging-On to CompuServe
section in the COMM utility description.

1-133

SETKI

Advanced Programmer’s Command
SETKI [(parameters)]

Sets keyboard repeat parameters. If you do not specify a parameter,
the current delay and repeat rate settings are displayed.

You can use SETKI to adjust how your keyboard reacts when you
press a key.

The parameters are:

DEFAULT returns the parameters to their start-up values.

RATE =number sets the repeat rate as number. number is any
number greater than or equal to 1. number equals 2 when
the system is started or reset.

WAIT =number sets the initial delay between the time a key is
first pressed and the first repeat of that key as number.
number is any number greater than or equal to 10. number
equals 22 when the system is started or reset.

QUERY prompts you to enter new values for RATE =number
and WAIT =number.

Examples
SETKI (WAIT=15)

sets the delay rate to 15.
SETKI (ENTER)

displays the current delay and repeat rate settings in the format:
Wait=15, Rate=2

Note: Both the RATE and WAIT parameters use modulo 128. For
example, entering 138 has the same effect as entering 10.

1-134

SPOOL

Command
SPOOL [devspec] [TO] [filespec] (parameters)

establishes a First-In, First-Out buffer for a specified device (usually a
line printer).

You can use SPOOL to print data while you perform other operations
on your computer (such as create a BASIC program). However, you
can not spool using BANK 1 or 2 when a BASIC program is running.

If you do not specify devspec, it defaults to *PR.
The parameters are:

NO turns off the spooler and resets devspec.

MEM =number specifies number as the amount of memory
buffer (in K) to be used by the spooler. The value of number
is1-32.

BANK =number selects one of three 32K banks of memory to be
used as the spool buffer. number can be a 0, 1, or 2. The
default value of number is 0.

DISK =number specifies number as the amount of disk space (in
K) to be used by the spooler. The value of number cannot
be larger than the amount of available space (in K) on the
disk.

PAUSE temporarily suspends output to devspec.

RESUME restarts devspec after a PAUSE.

CLEAR clears the spool buffer.

How Data Is Spooled To a Device

All data sent to devspec, such as a printer, is placed in an output
buffer where it waits until the device is again available to accept the
data.

There are two kinds of output buffers: memory and disk. You can set
up a spooler with both types of buffers. Or, you can set up a spooler
with a memory buffer only.

The minimum space allocation for the memory buffer depends on
which BANK you select. If you specify BANK 0, a minimum of 1K
(1024 bytes) is allocated for the memory buffer. If you specify BANK
= 1 or BANK = 2, the entire 32K bank is automatically used for the
memory buffer.

If you specify both buffers, data is sent first to the memory buffer.
When the memory buffer is full, the data is sent to a disk buffer
named filespec, where it waits to be sent to the device. If you specify
a memory buffer only, data is sent to a memory buffer until the device
is ready to accept it.

1-135

When you specify filespec, you may also use the DISK parameter to
specify the amount of disk space to be used by the spooler. TRSDOS
creates a file of the size specified. If you do not specify DISK=,
approximately 5K of disk space is automatically allocated to filespec.

To prevent TRSDOS from allocating any disk space to SPOOL,
specify DISK=0.

filespec remains open as long as SPOOL is on. Do not REMOVE this
file or remove the disk from the drive without closing the file (by
issuing a SPOOL devspec (NO) command).

You cannot issue a SYSGEN library command if the spooler is on.

Once the spooler is turned off, you can turn it on again. The same
memory locations are used, but the following restrictions apply:

e The original parameters are not affected by turning devspec
off and then on.

e Any parameter specified the second time cannot exceed the
memory or disk parameters originally given. If they do, an
error occurs.

Examples
SPOOL #PR TO TEXTFILE:® (MEM=5,DI5K=135) (ENTER

allocates 5K of memory and 15K of disk space in a file named
TEXTFILE/SPL on Drive 0. Since you did not specify an extension to
TEXTFILE, it defaulted to /SPL.

Any output for the printer is buffered and sent to the line printer (+xPR)
as fast as the printer can accept the characters. If the 5K memory
buffer is filled, the data is written to the disk file TEXTFILE/SPL on
Drive 0.

SPOOL #PR (BANK=1,DISK=0) (ENTER

creates a 32K memory buffer for data sent to *PR. Any output for the
printer is sent to the memory buffer and then spooled to *PR when it
is available to accept the data. Since the parameter DISK= is
specified without any size, none of the spooled data is sent to a disk
file.

If the memory buffer is filled, TRSDOS does not process any more
printer data until *PR has printed enough data to bring the number of
characters waiting to be printed below 32K (the size of the memory
buffer).

SPOOL (CLEAR) (ENTER
clears the information in the spool buffer.

SPDOL PR (NO) (ENTER

1-136

turns off the spooler and closes the associated disk file. Any filtering,
linking, setting, or routing done to *PR is reset.

You cannot close the disk file by issuing a RESET or REMOVE library
command. SPOOL must be turned off to close the file.

Sample Use

Since most programs produce reports faster than the printer can print
the data, you can use SPOOL to let the programs run at top speed
without having to stop and wait on the printer. That is, while the first
program’s report is still printing, you can begin executing the second
program.

Error Conditions

Some application programs do not honor HIGH$ and write over a
portion of the SPOOL program. If this happens, the error message
“Can’t locate SPOOL in memory” appears. In the future do not use
that application program with SPOOL.

If you issue a SPOOL (OFF) command when SPOOL is already off,
the error message “Spool is not active” appears. If you attempt to
change the parameters of SPOOL after SPOOL is active, the error
message “Spool is already active” appears. You must turn SPOOL off
and turn it back on with the new parameters.

If you load another module into memory after you turn the spooler off,
and you attempt to reload the spooler with different parameters,
TRSDOS issues a “Cannot reinstall with altered parameters” error
message. You can re-activate the spooler with the original
parameters. If you want to alter the spool parameters, you must reset
the system. If you still need the other module, reload it and reload the
spooler with different parameters.

If you load another program that uses high memory after you load
SPOOL, TRSDOS may not be able to release memory it is using. The
error message “Can’t reclaim memory space” appears. You must
reset the system if you need the space.

If you attempt to use Banks 1 or 2 on a 64K system or if you request
a bank that is already in use, the message “Requested bank in use”
appears.

If there is not enough memory available to set up the routes that the
spooler uses, TRSDOS displays a “No memory space available” error
message. Remove any unused logical devices.

TRSDOS also issues this error message if an application program
sets Bit 0 of CFLAGS. The application program must reset the bit in
CFLAGS$. See the Model 4/4P Technical Reference Manual for
additional information on CFLAGS.

The driver that is connected to the devspec specified in a SPOOL
command must be an output device driver. If you specify an input
device the error message “Device driver incompatible” appears.

1-137

Advanced Programmer’s Command
SYSGEN [([switch] [,] [DRIVE = drive])]

creates a configuration file on drive to store information about your
system.

You can use SYSGEN to create a file of current device and driver
configurations that you want TRSDOS to execute each time you

return your computer to the TRSDOS copyright and start-up message.

If you do not specify drive, it defaults to Drive 0.
The switch is either YES or NO.

If you specify switch as YES, then your system creates a
configuration file. If you don’t specify switch, then YES is assumed.

If you specify switch as NO, then your system removes the
configuration file. However, your system’s current configuration does
not change until you reset your computer.

When you issue a SYSGEN command, all current device and driver
configurations are stored in a file named CONFIG/SYS. The file is
invisible in the directory.

Each time you reset your computer, TRSDOS loads the CONFIG/SYS
file into memory. While this program is loading, TRSDOS displays the
message ** SYSGEN ** in the lower left corner of the display.

If you do not want TRSDOS to load CONFIG/SYS, hold down the
CLEAR) key when you reset the system. See the BOOT command for
additional information on booting your system.

Note: CONFIG/SYS files that were created using previous versions of
TRSDOS, Version 6.0 or 6.1, cannot be used with TRSDOS Version
6.2. You cannot copy a configuration file to a disk. You must use
SYSGEN to create a new CONFIG/SYS file for Version 6.2.

When you start up or reset your computer, it is configured before any
AUTO command executes.

The configuration file CONFIG/SYS contains:

@ All active background tasks (such as CLOCK, DEBUG,
TRACE, etc.).

@ All filtering, linking, routing, and device setting (including
RS-232C and KI settings).

1-138

@ All programs that were loaded into high memory above HIGHS.
All memory from HIGH$ to the top of memory is written to
CONFIG/SYS. HIGH$ can be set with the MEMORY command
or with the @HIGH$ supervisor call (see the Technical
Reference Manual).

@ The present state of the VERIFY library command (YES or
NO).

@ All Device Control Blocks (see the Model 4/4P Technical
Reference Manual for more information).

® The present state of the CAPS lock for the keyboard.

Any ROUTE or SET involving a file should never be SYSGENed.
SYSGENIing open files can result in lost data if the disks are switched
in the drives without the files being closed. Switching a disk with open
files can also cause existing data to be overwritten.

Examples
SYSGEN (YES) (ENTER

creates a configuration file on Drive 0 and writes the system
configuration to it.

5¥SGEN (ND) (ENTER
removes the configuration file from Drive 0.
Error Conditions

If you use a SYSGEN command in a JCL file, TRSDOS issues a
“Command invalid during <DO> processing” error message.

If you specify a value for DRIVE that does not contain a system
diskette, TRSDOS displays a “Warning: Target drive contains no
system” error message.

If you attempt to sysgen while a device is routed to a file, TRSDOS
displays a “** SYSGEN inhibited at this time **” error message. You
must remove all routes before you sysgen.

Sample Use

Suppose you want to create a file of commands that automatically
execute each time you startup TRSDOS.

Issue the commands:

TIME (CLOCK=YES) (ENTER
SYSTEM (TRACE=YES) (ENTER
SYSGEN (YES) (ENTER

to create a CONFIG/SYS file that contains CLOCK and TRACE
information.

1-139

Advanced Programmer’s Command
SYSTEM (subcommand|parameter])

Allows you to change the configuration of your TRSDOS system.

You can use the SYSTEM command to customize portions of
TRSDOS to function differently when you boot or reset the system.
When you make these changes, you can store them on the diskette in
Drive 0 with the SYSGEN command. Every time you boot or reset
TRSDOS with that diskette, your changes are in effect rather than the
original TRSDOS values. For example, you can use the BLINK
subcommand to change the cursor from a blinking cursor to a
non-blinking cursor or to another character.

You can use the SYSTEM command with subcommands to set or
change the disk drive configuration, load driver routines into high
memory, and turn on or off keyboard, video, and hardware functions.
Some SYSTEM subcommands use portions of high memory. Each of
the subcommands and their parameters are described in more detail
below.

The DEVICE or MEMORY commands display the current configuration
of your TRSDOS system.

If an application program sets Bit 0 of CFLAG$, TRSDOS issues a
“No memory space available” error message when you attempt to
use the SYSTEM subcommands. The application program must reset
the bit in CFLAGS$. See the Model 4/4P Technical Reference Manual
for additional information on CFLAGS.

Subcommands

ALIVE displays a changing character in the screen’s upper right
corner.

SYSTEM (ALIVE[= switch))

switch can be YES or NO. If you omit switch, TRSDOS assumes YES
and displays the changing character. NO disables the ALIVE
subcommand.

The changing character indicates that the task processor is running.
The character may continue to move even when the SYSTEM
(TRACE) command stops.

During FORMAT operations and disk I/O, the character stops moving.
Otherwise, if the character is not moving, the system is “hung-up.”

BLINK changes the cursor character.
SYSTEM (BLINKparameter)

1-140

Parameter may be:

=YES returns the cursor to its default character, a blinking ASCII 95
(X'5F).

=NO changes the blinking cursor to a non-blinking cursor.

=number changes the cursor to the ASCII character you specify with
number.

,LARGE changes the cursor to the character ASCIl 191.

,SMALL changes the cursor to the character ASCII 160.

If you omit parameter, BLINK changes the cursor to its default
character, a blinking ASCII 95 (X'5F).

BREAK enables or disables (BREAK).
SYSTEM (BREAK] = switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and enables (BREAK). YES enables (BREAK) if it was disabled by
the AUTO library command.

Pressing (BREAK) has no effect after you execute a (BREAK=NO)
command.

BSTEP establishes the default bootstrap step rate TRSDOS uses
when formatting.

SYSTEM (BSTEP =number)

number can be a number in the range 0-3 indicating the following step
rate:

6 milliseconds

12 milliseconds
20 milliseconds
30 milliseconds

WN -

The Drive 0 diskette must be write-enabled when changing the
bootstrap step rate. TRSDOS stores the value on logical Drive 0. If
you change the diskette in Drive 0 or change the logical Drive 0 with
the SYSTEM (SYSTEM) command, TRSDOS assumes the bootstrap
rate on the new system disk.

DATE enables or disables the date prompt when you turn on your
computer.

SYSTEM (DATE[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and enables the date prompt. NO disables the date prompt when
you turn on your computer.

We recommend that you do not disable the date prompt. TRSDOS
uses the date when accessing and creating files, making backups,
and formatting disks.

1-141

DRIVE allows you to configure your system’s logical drives.
SYSTEM (parameter|,parameter])
The parameters are:

DRIVE =drive specifies any valid drive number that you are changing
the default values for. If you include DRIVE, use it only one time as
the first parameter in the command line.

You must specify the DRIVE with DRIVER, ENABLE, and DISABLE.

DRIVER = device driver specifies the name of the disk driver for the
drive number you specify with the DRIVE parameter. You must
enclose device driver in quotes.

DISABLE removes access to the drive you specify with the DRIVE
parameter. If you try to access a drive after you have disabled it,
TRSDOS displays an “Invalid drive number” error message.

ENABLE allows access to a disabled drive.

If you omit DRIVE with CYL, DELAY, STEP, and WP, TRSDOS sets
these values on all enabled drives.

CYL =number specifies the default number of cylinders for the
FORMAT utility. number can be a value in the range 35 to 96.
TRSDOS writes CYL to the diskette in Drive 0. If you change the
diskette in Drive 0, TRSDOS takes the value for CYL from the current
Drive 0 diskette.

DELAY = switch sets the delay time for diskettes. Delay time is the
maximum length of time TRSDOS allows between drive motor-on and
the first attempted access (read or write) of that drive. switch may be
YES or NO. If you specify NO, TRSDOS allows the standard delay
time, .5 seconds. If you specify YES, TRSDOS sets delay time to 1
second.

STEP =number sets the step rate. Step rate is the length of time for
the read-write head to move from one cylinder to another. The step
rate remains in effect until the system is re-booted, turned off or
sysgened. number may be a number in the range 0 to 3 and
represents the following rates in milliseconds:

Number Milliseconds
0 6
1 12
2 20
3 30

WP = switch sets the Write Protect status. switch may be YES or NO.
If you omit switch, TRSDOS assumes YES. If you specify YES, you
cannot write to the disk, although you can still read from it. If you
specify NO, you can write to and read from the disk (assuming the
disk is not hardware write protected).

1-142

FAST sets the systém speed at 4 Megahertz (Mhz), Model 4/4P
speed.

SYSTEM (FAST)

Timing loops in TRSDOS Version 1 programs may require you to use
the SLOW subcommand to run the system at the Model 3 speed of 2
Mhz. These programs may not function properly at 4 Mhz. Use the
FAST subcommand to reset the system to 4 Mhz after executing a
SLOW subcommand.

GRAPHIC informs TRSDOS that the printer you are using has the
capability of reproducing TRS-80 graphics characters during screen
print.

SYSTEM (GRAPHIC[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES, indicating that your printer has the capability to reproduce
graphics characters.

When you press and (2), TRSDOS sends a duplicate copy of
the screen to the printer. Normally, TRSDOS prints all characters that
have ASCII values greater than X'7F as periods (.). When you
execute a GRAPHICS = YES statement, TRSDOS prints these
characters as their actual graphic characters. You must have a
graphics printer to print these characters.

HERTZ patches your system to run at 50 or 60 Hertz (Hz).
SYSTEM (HERTZnumber)

number can be 5 to specify 50 Hertz, or 6 to specify 60 Hertz.
TRSDOS stores this value on the logical Drive 0. There must not be a
space between HERTZ and number.

Before you use the HERTZ subcommand, see Appendix L for
additional information.

RESTORE enables or disables the restoring of all drives to Track 0 at
startup.

SYSTEM (RESTORE][= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and restores all drives.

TRSDOS assumes that the drives are at Cylinder @ when you startup
or reset the system. The RESTORE subcommand causes TRSDOS to
force the hardware to Cylinder 0 as well. This decreases initial disk
access time.

SLOW sets the system speed at 2 Megahertz (Mhz), Model Il speed.
SYSTEM (SLOW)

Timing loops in TRSDOS Version 1 programs may require you to use
the SLOW subcommand to run the system at the Model 3 speed of 2
Mhz. These programs may not function properly at the Model 4/4P

1-143

speed of 4 Mhz. Use the FAST subcommand to reset the system to 4
Mhz after executing a SLOW subcommand.

SMOOTH allows smoother disk access by disabling interrupts earlier.
SYSTEM (SMOOTH][= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and activates SMOOTH.

When SMOOTH is active, TRSDOS disables interrupts when reading
data from a floppy disk. This increases disk access speed. However,
the type-ahead function depends on interrupts occurring at regular
intervals. Disabling the interrupts can cause a loss of keystrokes
during disk 1/0. When Smooth is active, the time-of-day clock is not
accurate.

SYSRES loads TRSDOS system overlays into high memory.
SYSTEM (SYSREM =number)

number specifies the overlay TRSDOS loads into memory. number
may be 1, 2, 3, 4, 5, 9, 10, 11, or 12. You can only specify one
system overlay per command line.

Every time TRSDOS needs to access a system overlay, TRSDOS
must load that overlay into memory. Loading the overlays into
memory increases processing time because they are immediately
available.

If you load the overlays into high memory, you can remove them from
your system diskette with the PURGE command. This leaves more
room available on your diskette for data and program files.

SYS0, SYS1, SYS2, and SYS3 must be on the booting disk if you
load a configuration file with the SYSGEN command. See the Model
4/4P Technical Reference Manual for additional information.

Use the DEVICE command to display which overlays are currently in
memory.

SYSTEM assigns a drive other than Drive 0 as your system drive.
SYSTEM (SYSTEM = drive)

drive may be any valid drive in your system. The drive that you
specify becomes logical Drive 0. The original Drive 0 then becomes
the logical drive number specified.

There must be a system disk in drive when you execute a SYSTEM
subcommand. Every time you execute a SYSTEM subcommand, the
logical drive numbers of Drive 0 and drive change. You can repeat
this command as many times as you want. Be sure to remember
which drive is assigned to which logical drive number.

TIME enables or disables the time prompt when you startup your
system.

1-144

SYSTEM (TIME[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and enables the time prompt. NO disables the prompt after you
have executed a TIME =YES command.

If TRSDOS does not prompt you for the time when you startup your
system, the system clocks starts at 00:00:00 each time you start up
the system.

TRACE displays the contents of the program counter (PC) in the
upper right corner of the video display.

SYSTEM (TRACE[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes
YES and displays the program counter. NO turns off the display after
a TRACE = YES command.

The TRACE subcommand is useful when debugging
assembly-language programs. The value that TRACE displays is the
hexadecimal value of the Z-80 program counter and is constantly
updated by a low priority background task. The program counter
contains the address of the next instruction to be executed. See the
@ADTSK SVC in the Model 4/4P Technical Reference Manual for
additional information.

TYPE enables or disables the keyboard type-ahead feature.
SYSTEM (TYPE[= switch])

switch may be YES or NO. If you omit switch, TRSDOS assumes NO
and disables the type-ahead feature. Use TYPE =YES to re-enable
the feature.

1-145

TAPE100

(Model 4 only)

TAPE100 [file] [(parameters)] Utility
TAPE100 [file1 [TO] file2] [(parameters)]

Lets TRSDOS (1) read a cassette tape file and write it to a disk file,
or (2) read a disk file and write it to a cassette tape.

You can use TAPE100 to read files from cassette tape as well as
from Model 4 disks.

The cassette tape must have been made with the Model 100
computer.

file, file1, and file2 are each either a TRSDOS filespec or a Model 100
filename.

A Model 100 filename is 1 - 6 alphanumeric characters long and it
must begin with a letter. For example, ACCT61, LETTER, and
ABFILE can be Model 100 filenames.

If you do not specify file or file1 and file2, you will be prompted to
enter the source and destination filespecs if the operation is a WRITE,
or just the destination filespec if the operation is a READ.

The parameters are:

READ specifies that you want to read a file (file or file1) from
tape and write it to a file (file or file2) on disk. If you specify
READ, you do not have to specify file1. TRSDOS simply
reads the first text file it sees on the tape.

WRITE specifies that you want to read a disk file (file or file1)
and write it to a tape as file or file2.

If you do not specify the READ or WRITE parameter, you will be
prompted for it.

Examples
TAPE10® PRNTER TO PRINT/DAT:® (READ) (ENTER

TRSDOS reads the Model 100 file PRNTER and writes it to the disk
in Drive 0 as PRINT/DAT.

TAPE1@® ACCTING/TXT:1l (READ) (ENTER

TRSDOS reads the first text file it finds on a Model 100 tape and
writes it to the disk in Drive 1 as ACCTING/TXT.

TAPE1@Q® WEST/DAT:0® TO WESTRN (WRITE) (ENTER

TRSDOS reads the Drive 0 disk file WEST/DAT and writes it to a file
on a Model 100 tape named WESTRN.

Error Conditions

Any file (disk or tape) must fit in available memory or the error
message “File too large to fit in available memory” appears.

1-146

TIME

Command
TIME [hh:mm:ss] [(parameter)]

You can use TIME to see the current time. You can also use it to
reset the time.

If you specify hh:mm:ss, TRSDOS resets the time. If you do not
specify it, TRSDOS displays the current time.

The parameter is:

CLOCK=YES/NO turns the clock display on or off. YES is the
default.

hh must be a value in the range 00 to 24, and mm and ss must be a
value in the range 00 to 59. If you specify hh:mm:ss, you must specify
valid numbers for all three values. Specifying values outside these
ranges or not in the proper format results in the error “Bad time
format.”

You may use any of the ASCII characters in the range 32 (X'20’)
through 39 (X'27’), 41 (X'29’) through 47 (X'2F’), and 58 (X'3A’), to
separate hours, minutes, and seconds. See Appendix C for a
complete list of ASCII character codes.

The real time clock turns off while TRSDOS does some of its disk 1/0
functions, such as BACKUP and FORMAT, so do not depend on the
clock for constantly accurate time and date information.

You can enable and disable the prompt for time on power-up or reset
with the SYSTEM (TIME =) command.

Examples

TIME (ENTER

displays the real time of the system. The clock is reset to 00:00:00
every time you power up.

TIME (CLOCK=YES) (ENTER

displays the real time clock in the upper right corner of the screen.
Note: CLOCK will print over whatever TRSDOS attempts to print at
the location occupied by the clock display.

TIME 12:29:34 (ENTER

sets the clock to 12:29:34 p.m. The latest acceptable time is 23:59:59,
as the clock runs in the 24-hour mode. When the clock reaches
23:59:59, the date is automatically updated.

The time lag between pressing (ENTER) and the time set on the clock
is approximately 2 seconds. So, when setting the clock with the
correct time, remember to adjust for the 2-second time lag.

1-147

TOF

Command
TOF

Sends a top-of-form character (X’0C’) to the printer.

TOF causes the printer to advance to the top of the next page before
printing. You can use TOF with any printer.

If your printer cannot interpret a top-of-form character, you must use
the FORMS filter with FFHARD off (the default setting) to use this
command. All Radio Shack DMP series printers can interpret
top-of-form characters.

See FORMS for additional information on FFHARD.
Example
TOF

sends a top-of-form character to the printer causing the printer to
advance to the top of the next page.

1-148

VERIFY

Command

VERIFY [(switch)]

Controls the verify function.

You can use VERIFY to assure you that data was properly written to
a disk.

When VERIFY is on, TRSDOS reads the data it writes to the disk to
verify that the data is readable.

The switch is either ON or OFF.

A TRSDOS floppy disk system starts up with VERIFY off. A hard disk
system starts up with VERIFY on.

Although having the VERIFY switch turned on provides a reliability
check during disk 1/O, it also increases overall processing time when
you write to a disk file. You must determine if the increase in reliability
warrants the increase in processing time.

All disk writes are automatically verified during any BACKUP utility
function, whether or not the VERIFY switch is on.

The state of the VERIFY command can be saved in the configuration
file with the SYSGEN library command. (You can check the present
status of VERIFY using the DEVICE command.)

Examples
VERIFY (ON)
turns on the verify function.
VERIFY (OFF)
turns off the verify function.
VERIFY
turns on the verify function.
Sample Use

Suppose you are writing a tax file named TAX/TXT to disk and it is
extremely important that the information in the file be correct.

Using VERIFY causes TRSDOS to produce an informative message
when data written to TAX/TXT is written incorrectly. An informative
message could indicate that the disk needs to be replaced or the
drives need to be cleaned.

1-149

Part II/ BASIC For TRSDOS Version 6 Reference
Manual

Introduction

This part of the manual is about the BASIC language. BASIC for
TRSDOS Version 6 is an “interpreter.” When you run a program, it
executes each statement one at a time. This makes it quick and easy
to use. It also allows you to take advantage of many of TRSDOS
Version 6’s features, such as:

® Faster running programs
@ Better graphics capabilities

® More print positions on the screen

About this Manual

Notations

This is a reference manual, not a tutorial. We assume you already
know BASIC and are using this manual to quickly find the information
you need.

Section |l — Operations. This section shows how to load BASIC.
It also demonstrates how to write, run and save a BASIC
program on disk.

Section IV — The BASIC Language. This section includes a
definition for each of BASIC’s keywords (statements and
functions) in alphabetical order. In addition, it shows how to write
a program to store data on disk.

IMPORTANT NOTE: If you have read “Getting Started with TRS-80
BASIC”, you need to know the differences between TRSDOS Version
1 and TRSDOS Version 6 BASIC. Appendix E shows these
differences. These differences will often prevent a BASIC program
written for TRSDOS Version 1 from running under TRSDOS Version
6, unless the program is modified. You also need to know how to use
“disk files.” This is explained in Chapter 5.

CAPITALS material which must be entered exactly as it
appears.

italics words, letters, characters or values you must
supply from a set of acceptable entries.

... (ellipsis) items preceding the ellipsis may be repeated.

X’NNNN'’ NNNN is a hexadecimal number.

O’NNNNN’ NNNNN is an octal number.

(KEYNAME) one of the keys from your keyboard.

2-3

Terms
buffer

[parameters]

[expressions]

syntax

a space character (ASCIl code 32). For
example, in

BASICBHPROG
there are two spaces between BASIC and PROG.

a number between 1 and 15. This refers to an
area in memory that BASIC uses to create and
access a disk file. Once you use a buffer to create
a file, you cannot use it to create or access any
other files; you must first close the file. You may
only access an open file with the buffer used to
open it.

information you supply to specify how a command

is to operate. Parameters enclosed in brackets are-

optional.

values you supply for a function to evaluate.
Expressions enclosed in brackets are optional.

a command with its parameter(s), or a function
with its argument(s). This shows the format to use
for entering a keyword in a program line.

Terms Used in Chapter 7 for Brevity:

line number

integer

string

number

dummy number
or dummy string

a numeric value that identifies a BASIC program
line. Each line has a number between 0 and
65529.

any integer expression. It may consist of an
integer, or several integers joined by operators.
Integers are whole numbers between — 32768 and
32767.

any string expression. It may consist of a string, or
several strings joined by operators. A string is a
sequence of characters which is to be taken
verbatim.

any numeric expression. It may consist of a
number, or several numbers joined by operators.

a number (or string) used as a parameter to meet
syntactic requirements, but whose value is
insignificant.

2-4

Part Il is organized this way:

Section Ill. Operations

Chapter 1.
Chapter 2.

Chapter 3.

Sample Session

Command Mode
Execution Mode

Line Edit Mode

Section IV. The BASIC Language

Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.

BASIC Concepts

Disk Files

Introduction to BASIC Statements and Functions
BASIC Statements and Functions

e

Section IIl/ Operations

Chapter 1/ Sample Session

Loading BASIC

The easiest way to learn how BASIC operates is to write and run a
program. This chapter provides sample statements and instructions to
help familiarize you with the way BASIC works.

The main steps in running a program are:

A) Loading BASIC

) Typing the program
) Editing the program
)
)

oow

Running the program
Saving the program on disk
) Loading the program back into memory

mm

After you power up your system and install the diskette, the TRSDOS
Version 6 start-up logo is displayed. Then, the following prompt
appears: Date?

To answer this prompt, type today’s date in this format: DD/MM/YY;
then press (ENTER). For example, for December 1, 1984, type:

12/01/84 (ENTER

The computer converts these numbers to: Thu, Dec 1, 1984 and
displays the message “TRSDOS Ready”. This indicates that you are
at the Operating System level. To load BASIC into the system, type:

BASIC (ENTER

A paragraph with copyright information appears on your screen,
followed by: Ready

You may now begin using BASIC.

Options for Loading BASIC

When loading BASIC, you can also specify a set of options. They are:

BASIC [program] ([F =number of files] [,M = highest memory
location])

Program specifies a program to run immediately after BASIC is
started.

F = specifies the maximum number of data files that may be open at
any one time (from 0-15). If you omit this option, the number of files
defaults to three. Each file you specify uses 564 bytes of memory.

M= specifies the highest memory location for BASIC to use. Omit
this option unless you are going to call assembly-language
subroutines. (In that case, you may want to set the amount of
memory well below the high-memory modules of TRSDOS.) If you

2-9

omit this option, the system allocates all memory up to the HIGHS
marker to BASIC. HIGH$ can be adjusted through the MEMORY
library command. See the BASIC Memory Map in Appendix J for
more details.

Examples

TRSDOS Readv
BASIC PaYROLL (F=5) (ENTER

initializes BASIC, then loads and runs the program PAYROLL,; allows
five data files to be open; uses all memory available.

TREDOS Ready
BASIC (M=45056) (ENTER

initializes BASIC; allows three data files to be open; sets the highest
memory location to be used by BASIC at 45056.

TRSDOS Ready
BASIC (M=63488, F=6) (ENTER

initializes BASIC; sets the highest memory location at 63488; allows
six data files to be open. Notice that the sequence in which the M=
and F= options are specified is irrelevant.

TRSDOS Readvy
BASIC :

initializes BASIC; allows three data files to be open; uses all memory
available.

Typing the Program

Let's write a small BASIC program. Before pressing (ENTER) after each
line, check the spelling. If you have made any mistakes, use the
key to correct them.

10 A%="WILLIAM SHAKESPEARE WROTE " (ENTER
15 B%="THE MERCHANT OF VENICE" (ENTER
20 PRINT As%3; Bs (ENTER

Check your spelling again. If it is still not perfect, enter the line
number where you made the mistake. Then type the entire line again.

For example, suppose you had typed:

15 B$="THE VERCHANT OF VENICE"
To correct line 15, re-type it:

15 B%="THE MERCHANT OF VENICE" (ENTER
Then type:

RUN

2-10

Your screen should display:

WILLIAM SHAKESPEARE WROTE THE MERCHANT OF
VENICE

BASIC replaced line 15 in the original program with the most recent
line 15.

NOTE: BASIC “reads” your program lines in numerical order. It
doesn’t matter if you entered line 15 after line 20; it will still read and
execute 15 before “looking” at 20.

BASIC has a powerful set of commands which allow you to correct
mistakes without having to re-type the entire line. These commands
are discussed in Chapter 3, the “Line Edit Mode.”

Saving the Program on Disk

You can save any of your BASIC programs on disk. The disk must be
write-enabled and formatted. To do this, you assign it a “filespec”.

For example, if you wanted to save the program we just wrote, you
could assign it the filespec “AUTHOR”. Type the following command:

SAVE "AUTHOR" (ENTER)

It takes a few seconds for the computer to find a place on disk to
store our program. When this process is completed, it displays Ready.
The program is now saved on disk.

NOTE: A filespec can have a maximum of eight alphanumeric
characters. It can also have an optional extension, up to three
characters long. A slash / must be included between the filespec and
the extension. The first character of both the filespec and the
extension must be a letter. See Section |, “Disk Files” for additional
information.

Example
SAVE “"AUTHOR/WIL" (ENTER

You may also add a drive number to your filespec by typing a colon :
and the drive number.

Example
SAVE "AUTHOR:1" (ENTER

tells the computer to save “AUTHOR” on the disk in Drive 1.
Otherwise, the computer assumes you to save it on the first available
drive. If you do specify a disk drive, make sure you have a disk in that
drive.

2-11

Loading the Program

If, after writing or running other programs, you wanted to go back and
use this program again, you must “load” it back into memory. To do
this, type: LOAD “filespec”, R

Example
LOAD "AUTHOR", R (ENTER

tells the computer to load the program “AUTHOR” from disk into
memory; option R tells the computer to run it.

Another way to load and run a program is to type: RUN “filespec”.
RUN automatically loads and runs the program specified by
“filespec”.

The SAVE, LOAD and RUN commands are discussed in more detail
in Chapter 7.

2-12

Chapter 2/
Command And Execution Modes

This chapter describes BASIC’s command and execution modes. The
command mode is for typing in program lines and immediate lines.
The execution mode is for executing programs and immediate lines.

Command Mode
Whenever you enter the command mode, BASIC displays the prompt:
Ready

In the command mode, BASIC does not “read” your input until you
complete a “logical line” by pressing (ENTER). This is called “line
input”, as opposed to “character input”.

A logical line is a string of up to 255 characters and is always
terminated by pressing (ENTER). Of these 255 characters, 249 are
reserved for the line itself; the other six are reserved for the line
number and the space following the line number.

A physical line, on the other hand, is one line on the display. It
contains a maximum of 80 characters.

For example, if you type 100 R’s and then press (ENTER), you have
two physical lines, but only one logical line.

Interpretation of a Line

BASIC always ignores leading spaces in the line — it jumps ahead to
the first non-space character. If this character is not a digit, BASIC
treats the line as an immediate line. If it is a digit, BASIC treats the
line as a program line.

For example, if you type:

PRINT "THE TIME IS" TIME$
BASIC takes this as an immediate line.
But if you type:

1@ PRINT “THE TIME IS" TIME$ (ENTER
BASIC takes this as a program line.

Immediate Lines

An immediate line consists of one or more statements separated by
colons. The line is executed as soon as you press (ENTER). For
example:

Ready
CLS: PRINT "THE SQUARE ROOT OF 2 IS"3: SOR(Z)

is an immediate line. When you press (ENTER), BASIC executes it.

2-13

Program Lines

A program line consists of a line number in the range 0 to 65529,
followed by one or more statements separated by colons. When you
press (ENTER), the line is stored in memory, along with any other lines
you have entered this way. The program is not executed until you
type RUN or another execute command. For example:

100 CLS: PRINT "THE SQUARE ROOT DOF 2 I8"
SOR(Z)

is a program line. When you press (ENTER), BASIC stores it in
memory. To execute it, type:

RUN (ENTER

NOTE: If you include numeric constants in a line, BASIC evaluates
them as soon as you press (ENTER); it does not wait until you RUN the
program. If any numbers are out of range for their type, BASIC
returns an error message immediately after pressing (ENTER).

Special Keys in the Command Mode

- Backspaces the cursor, erasing the preceding

or CTRL(H) character in the line. Use this to correct typing
errors before pressing (ENTER).

SPACE BAR Enters a space character and advances the
cursor.

BREAK Interrupts line entry and starts over with a new
line.

CTRL Line feed — starts a new physical line without

or (1) ending the current logical line.

Switches the keys pressed to either all uppercase

or uppercase/lowercase mode.

ENTER Ends the current logical line. BASIC “takes” the
line.
SHIFT Deletes the current line.

Execution Mode

When BASIC is executing statements (immediate lines or programs),
it is in the execution mode. In this mode, the contents of the video
display are under program control.

Special Keys in the Execution Mode

SHIFD([@) Pauses execution. Press any other key (except
BREAK) to continue.

Terminates execution and returns you to command
mode.

Interprets data entered from the keyboard as a
response to the INPUT statement.

These keys have special meaning in Execution
Mode when responding to INPUT and LINE INPUT
statements. See description of keys in the section
“Special Keys in the Command Mode.”

2-15

Chapter 3/ Line Edit

Mode

This mode enables you to “debug” (correct) programs quickly and
efficiently. It allows you to correct a program line without having to
re-type the entire line.

If your computer encounters a syntax error while executing a
program, it automatically puts you in the “line edit mode.” The display

shows:
Svntax error in line number
Ready
line number

(line number is the program line in which the error occurred.) In this
case, you are ready to use the edit mode commands and
subcommands described later in this chapter.

However, if you wish to activate the line editor yourself (because you
have noticed a mistake or wish to make a change in a long program
line), type:

EDIT line number (ENTER

This lets you edit the specified line number. (If the line number you
specify has not been used, an “Undefined line number” error occurs.
If you do not have a space after the word EDIT, a “Syntax error”
occurs.)

You may also type:

EDIT . (ENTER

The period after EDIT means that you want to edit the current
program line, the last line entered, the last line altered, or a line in
which an error has occurred. Notice that you need to type a blank
before the period; otherwise, BASIC gives you a “Syntax error”
message.

For example, type the following line and press (ENTER). (To type the

~

exponent sign ” press (CLEARI(3)).

199 FOR I = 1 TO 1@ STEP .35: PRINT I, I"Z, 1733
NEXT

This line will be used in exercising all the edit subcommands
described below.

Now type EDIT 100 and press (ENTER). The computer displays:
100
This starts the editor. You may now begin editing line 100.

2-17

Special Keys in the Edit Mode

ENTER

Pressing (ENTER) in the edit mode records all the changes you made in
the current line and returns you to the command mode.

Space bar

Pressing the space bar moves the cursor over one space to the right
and displays any character stored in the preceding position. For
example, using line 100 entered above, put the computer in the edit
mode so the display shows:

100

Now press the space bar. The cursor moves mover one space and
the first character of the program line is displayed. If this character
was a blank, then a blank is displayed. Press the space bar again

until you reach the first non-blank character:

100 F

is displayed. To move over more than one space at a time, type the
desired number of spaces first, then press the space bar. For
example, type 6 and press the space bar. The display should show
something like this (depending on how many blanks you inserted in
the line):

1@ FOR I =

Now type 8 and press the space bar. The cursor moves over eight
spaces to the right, and eight more characters are displayed.

ige¢ FOR I = 1 TO 10

L (List Line)

displays the remainder of the program line (unless the computer is
under one of the insert subcommands listed below). The cursor drops
down to the next line of the display, reprints the current line number,
and moves to the first column on the line.

For example, when the display shows
100
press L (without pressing (ENTER)). Line 100 is displayed:

ige FOR I = 1 TO 1@ STEP .5: PRINT I, I"2, I"3:
NEXT 100

This lets you look at the line in its current form while you’re doing the
editing.

Insert Subcommand Mode

The insert subcommand mode allows you to add material to a line
while editing it. The three keys you can use to enter this subcommand
mode are X, | and H.

X (Extend Line)

Displays the rest of the current line. Typing also moves the cursor
to the end of the line and puts the computer in the insert
subcommand mode. This enables you to add material to the end of
the line.

For example, using line 100, when the display shows
100

press (X) (without pressing (ENTER)) and the entire line is displayed,;
notice that the cursor now follows the last character on the line:

ig@ FOR I = 1 TO 1@ S8BTEP .5: PRINT I, 172,
I"3: MNEXT

We can now add another statement to the line, or delete material
from the line by using the key. For example, type

: PRINT "DONE"
ENTER

at the end of the line. If you typed:
LIST 109
the display should show something like this:

l¢@ FOR I = 1 TO 1@ STEP ,5: PRINT I, I°2,
I*3: NEXT: PRINT "DONE"

NOTE: If you want to continue editing the line, press (SHIFT to get
out of the insert subcommand mode.

I (Insert)
Inserts material beginning at the current cursor position on the line.
For example, type

EDIT 100
ENTER

then use the space bar to move over to the decimal point in line 100.
The display shows:

1¢¢0 FOR I = 1 TO 1@ STEP .

Suppose you want to change the increment from .5 to .25. Press the
(D key (don't press (ENTER)). The computer lets you insert material at

the current position. Type 2 now, and the display shows:
190 FOR I = 1 TOD 1@ STEP .2

You have made the necessary change, so press (SHIFT to escape
from the insert subcommand. Now press to display the remainder
of the line and move the cursor back to the beginning of the line:

199 FOR I = 1 TO 1@ STEP .25: PRINT I.: I72,
1°3: NEXT: PRINT "DONE"
10@

NOTE: You can also exit the insert subcommand and save all
changes by pressing (ENTER). This returns you to command mode.

H (Hack and Insert)

Deletes the remainder of a line and lets you insert material at the
current cursor position.

For example, using line 100, enter the edit mode and space over until
just before the PRINT “DONE” statement. Suppose you wanted to
delete this statement and insert an END statement. The display
shows:

10 FOR I = 1 TO 1@ STEP .25: PRINT I+ I°Z2:
I°3: NEX
Press (H), then type END and press (ENTER). List the line:

190 FOR I = 1 TO 1@ STEP .25: PRINT I+ I°Z,
I°3: NEXT: END
should be displayed.

NOTE: To continue editing the line, press (SHIFT to get out of the
insert subcommand mode.

Other Edit Commands

A (Cancel and Restart)

Moves the cursor back to the beginning of the program line and
cancels editing changes made since the last time you pressed (ENTER).

For example, if you have added, deleted, or changed something in a
line, and you wish to go back to the beginning of the line and cancel
the changes already made: first press SHIFD(D) (to escape from any
subcommand you may be executing); then press (A). The cursor
drops down to the next line, displays the line number and moves to
the first character position.

E (Save Changes and Exit)

Ends editing and saves all changes made. You must be in edit mode,
not executing any subcommand, when you press (E) to end editing.

2-20

Q (Cancel and Exit)

Ends editing and cancels all changes made in the current editing
session. If you've decided not to change the line, type (@) to cancel
changes and leave the edit mode.

If a syntax error is detected during program execution, BASIC starts
the editor. To examine variable values, you must press Q before
typing any other command.

nD (Delete)

Deletes the specified number of characters to the right of the cursor.
The deleted characters appear enclosed in exclamation points.

For example, using line 100, space over to just before the PRINT
statement:

ige FOR I = 1 TO 1€ STEP ,Z5:

Now type 19D. This tells the computer to delete 19 characters to the
right of the cursor. The display should show something like this:

i¢e@ FOR I = 1 TOD 18 STEP .23: A\NPRINT I+ I72,
I°3:0\

When you list the complete line, you will see that everything from the
PRINT to the next statement has been deleted.

nC (Change)

Lets you change the specified number of characters beginning at the
current cursor position. If you type C without a preceding number, the
computer assumes you want to change one character. When you
have entered n number of characters, the computer returns you to the
edit mode (so you’re not in the nC subcommand).

For example, using line 100, suppose you want to change the final
value of the FOR NEXT loop, from “10” to “15”. In the edit mode,
space over to just before the “0” in “10”.

ige FOR I = 1 TO 1

Now press (). The computer assumes you want to change just one
character. Press (5), then press (L). When you list the line, you will
see that the change has been made.

1¢¢ FOR I = 1 TO 15 STEP .23: NEXT: END

would be the current line if you've followed the editing sequence in
this chapter.

2-21

nSc (Search)

Searches for the nth occurrence of the character ¢, and moves the
cursor to that position. If you don't specify a value for n, the computer
searches for the first occurrence of the specified character. If
character ¢ is not found, cursor goes to the end of the line.

NOTE: The computer only searches through characters to the right of
the cursor.

For example, using the current form of line 100 type EDIT 100
ENTER), then press (2)(S8)(:). This tells the computer to search for
the second occurrence of the colon character. The display should
show:

1¢¢ FOR I = 1 TO 135 STEP .25: NEXT

You may now execute one of the subcommands beginning at the
current cursor position. For example, suppose you want to add the
counter variable after the NEXT statement. Type | to enter the insert
subcommand, then type the variable name, |. That’s all you want to
insert, so press (SHIFD(A) to escape from the insert subcommand
mode. The next time you list the line, it should appear as:

199 FOR I = 1 TO 1% STEP .25: NEXT I: END

nKc (Search and "Kill")

Deletes all characters up to the nth occurrence of character ¢, and
moves the cursor to that position.

For example, using the current version of line 100, suppose we
wanted to delete the entire line up to the END statement. Type EDIT
100 (ENTER), then type (2)(KD(:). This tells the computer to delete all
characters up to the 2nd occurrence of the colon.

189 \FOR I = 1 TO 1% STEP .23: NEXT I\

should be displayed. The second colon still needs to be deleted, so
type D. The display now shows:

109 \FOR I = 1 TO 15 STEP .25: NEXT I\\:\
Press and type LIST 100
Line 100 should look something like this:

1¢@ END

n (=)

Moves the cursor to the left by n spaces. If no number n is given, the
cursor moves back one space. When the cursor backspaces, all
characters in its path are erased from the display, but they are not
deleted from the program. Use the space bar to advance the cursor
forward and re-display the erased characters.

2-22

Section IV/ The BASIC Language

Chapter 4/ BASIC Concepts

This chapter explains how to use the full power of BASIC for
TRSDOS Version 6. This information can help programmers build
powerful and efficient programs. If you are still something of a novice,
you might want to skip this chapter for now, keeping in mind that the
information is here when you need it.

The chapter is divided into four sections:

A. Overview — Elements of a Program. This section
defines many of the terms we will be using in the chapter.

B. How BASIC Handles Data. Here we discuss how BASIC
classifies and stores data. This shows you how to get BASIC to store
your data in its most efficient format.

C. How BASIC Manipulates Data. This gives you an
overview of all the different operators and functions you can use to
manipulate and test your data.

D. How to Construct an Expression. This topic can help
you in constructing powerful statements instead of using many short
ones.

A- Overview: Elements of a Program

This overview defines the elements of a program.
A program is made up of “statements”; statements may have several
“expressions.”

We will refer to these terms during the rest of this chapter.

Program

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line numbers
from 0 to 65529 inclusive. You may include up to 255 characters per
line, including the line number. You may also have two or more
statements to a line, separated by colons.

* You can type a maximum of 249 characters per line. BASIC
reserves the remaining six characters for the line number and for the
space following the line number.

Here is a sample program:

2-25

Line BASIC Colon between _BASIC statement

nun{:::r ! sta:temy stateW
» —~t— R et TN

100 CLS: " PRINT "NORMAL MODE..."
11@ PRINT "ABCDEFGHIJKLMNOPORSTUVKWXYZ"
120 FOR I = 1 TO 1000: NEXT I

130 CLS: PRINT CHR%(Z23)5 "DOUBLE-SIZE MODE..."
149 PRINT "ABCDEFGHIJKLMNOPORSTUVKXYZ"
15@¢ END

When BASIC executes a program, it handles the statements one at a
time, starting with the first and proceeding to the last. Some
statements, such as GOTO, ON ... GOTO, GOSUB, change this
sequence.

Statements

A statement is a complex instruction to BASIC, telling the computer to
perform specific operations. For example:

GOTO 100

tells the computer to perform the operations of (1) locating line 100,
(2) transferring control to that line and (3) executing the statement(s)
on that line.

END

tells the computer to perform the operation of ending execution of the
program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT"SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the
computer to print the data inside quotes.

Expressions

An expression is actually a general term for data. There are four
types of expressions:

1. Numeric expressions, which are composed of numeric data.
Examples:

(1 + 53.2)/3

D

S¥B

3,768B2

ABS(X) + RND(@)
SIN(3 + E)

2-26

2. String expressions, which are composed of character data.
Examples:

A%

"STRING"

"STRING" + "DATA"

MO% + "DATA"

MID$ (A% 2+5) + MIDS("MAN" »1,2)
M% + A% + B%

3. Relational expressions, which test the relationship between two
expressions.

Examples:

A=1
A% B

4. Logical expressions, which test the logical relationship between
two expressions.

Examples:

A$="YES" AND B$="ND"
C»5 OR M<B OR 03-2
578 AND 452

Functions

Functions are automatic subroutines. Most BASIC functions perform
computations on data. Some serve a special purpose, such as
controlling the video display or providing data on the status of the
computer. You may use functions in the same manner that you use
any data: as part of a statement.

These are some of BASIC’s functions:

INT
ABS
STRINGS

For example, ABS returns the absolute value of a numeric
expression. The following example shows how this function works:

PRINT ABS(7%(-5)) (ENTER
35
READY

B- How BASIC Handles Data

BASIC for TRSDOS Version 6 offers several different methods of
handling your data. Using these methods properly can greatly improve
the efficiency of your program. In this section we discuss:

2-27

Ways of Representing Data
Constants
Variables
How BASIC Stores Data
Numeric (integer, single precision, double precision)
String
How BASIC Classifies Constants
How BASIC Classifies Variables
How BASIC Converts Data

Ways of Representing Data

BASIC recognizes data in two forms: directly (as constants), or by
reference to a memory location (as variables).

Constants

All data is input into a program as “constants” — values which are
not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALE": Z

contains one string constant (1 PLUS 1 EQUALS), and one numeric
constant (2).

In these examples, the constants “input” to the PRINT statement.
They tell PRINT what data to print on the display.

These are more examples of constants:

3.14159 “L.O.SMITH”
1.775E+3 “0123456789ABCDEF”
“NAME TITLE” —123.45E—8
57 “AGE”

Variables

A variable is a place in memory where data is stored. Unlike a
constant, a variable’s value can change. This allows you to write
programs dealing with changing quantities. For example, in the
statement:

A$ = "OCCUPATION®

The variable A$ now contains the data OCCUPATION. However, if
this statement appeared later in the program:

A% = "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would now
contain the data FINANCE.

Variables can also store numeric values. For example:
A = 134

2-28

Variable Names

In BASIC, variables are represented by names. Variable names must
begin with a letter, A through Z. This letter may be followed by one or
more characters (digits or letters).

For example:
AM A A1 BALANCE EMPLOYEE2
are all valid and distinct variable names.
Variable names may be up to 40 characters long. All characters are
significant in BASIC.
Reserved Words

Certain combinations of letters are reserved as BASIC keywords and
operator names. These combinations cannot be used as variable
names. For example:

OR LEN OPTION

cannot be used as variable names. However, they may be embedded
in a variable name. For example, OPTIONS is a valid variable name.

TRSDOS Version 6 requires that all reserved words be delimited. This
means that you must leave a blank space between a reserved word
and any variables, constants or other reserved words. See Appendix
F for a list of BASIC's reserved words.

Simple and Subscripted Variables

Variables may also be “subscripted” so that an entire list of data can
be stored under one variable name. This method of data storage is
called an array. For example, an array named A may contain these
elements (subscripted variables):

A(0) A1) A@2) A(3) A(4)

You may use each of these elements to store a separate data item,
such as:

0N,
0o WM w

I T I

o
\,

In this example, array A is a one-dimensional array, since each
element contains only one subscript. An array may also be
two-dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

2-29

X(0,0) = 8.6 X(0,1) = 3.5
X(1,0) = 7.3 X(1,1) = 32.6

With BASIC, you may have as many dimensions in your array as your
program space allows. Here is an example of a three-dimensional
array named L which contains these eight eleménts:

L(0,0,0) = 35233 L(0,1,0) = 96522
L(0,0,1) = 52000 L(0,1,1) = 10255
L(1,0,0) = 33333 L(1,1,0) = 96253

L(1,0,1) = 53853 L(1,1,1) = 79654

BASIC assumes that all arrays contain 11 elements in each
dimension. If you want more elements you must use the DIM
statement at the beginning of your program to dimension the array.

For example, to dimension array L, put this line at the beginning of
the program:

DIM L1110

to allow room for two elements in the first dimension; two in the
second, and two in the third for a total of 2 * 2 * 2 = 8 elements.

How BASIC Stores Data

The way BASIC stores data determines the amount of memory it
consumes and the speed in which BASIC can process it.

Numeric Data

You may get BASIC to store all numbers in your program as either
integer, single precision, or double precision. In deciding how to get
BASIC to store your numeric data, remember the trade-offs. Integers
are the most efficient and the least precise. Double precision is the
most precise and least efficient.

Integers
(Fastest in Computations, Limited in Range)

To be stored as an integer, a number must be whole and in the range
of —32768 to 32767. An integer value requires two bytes of memory
for storage. Arithmetic operations are faster when both operands are
integers.

For example:
1 3200 -2 500 - 12345
can all be stored as integers.

2-30

Single Precision
(General Purpose, Full Numeric Range)

Single-precision numbers can include up to seven significant digits,
and can represent normalized values* with exponents up to 38, i.e.,
numbers in the range:

[—1 x 10%,—1 x 1073][1 x 10%,1 x 107°]

If a number is raised to a power greater than 38, an “Overflow” error
occurs. If it is raised to a power lower than — 38, no errors are
generated and program execution continues.

A single-precision value requires four bytes of memory for storage.
BASIC assumes a number is single precision if you do not specify the
level of precision.

* In this manual, normalized value is one in which exactly one digit
appears to the left of the decimal point. For example, 12.3 expressed
in normalized form is 1.23 x 10.

For example:
10.001 - 200034 1.774E6 6.024E —23 123.4567

can all be stored as single-precision values. But even though BASIC
stores a number with up to seven digits of precision, when printing it,
only six digits are shown.

NOTE: When used in a decimal number, the symbol E stands for
“single-precision times 10 to the power of . . .” Therefore 6.024E —23
represents the single-precision value:

6.024 x 10~ 2°

Double Precision
(Maximum Precision, Slowest in Computations)

Double-precision numbers can include up to 16 significant digits, and
can represent values in the same range as that for single-precision
numbers. A double-precision value requires eight bytes of memory for
storage. Arithmetic operations involving at least one double-precision
number are slower than the same operations when all operands are
single precision or integer.

For example:

1010234578
—8.7777651010
3.141592653589793
8.00100708D12

can all be stored as double-precision values.

NOTE: When used in a decimal number, the symbol D stands for
“double precision times 10 to the power of . . .” Therefore

2-31

8.00100708D12 represents the value
8.00100708 x 10'2

Strings

Strings (sequences of characters) are useful for storing non-numeric
information such as names, addresses, or text. You may store ASCI|
characters, as well as any of the graphic and non-ASCIl symbols, in a
string. (A list of Character Codes is included in Appendix C).

For example, the data constant:
Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and
blank) in the string is stored as an ASCII code, requiring one byte of
storage.

BASIC would store the above string constant internally as:

Hex |4A r'—_
Code '

AscCll| |
Char-| J | a
acter -

A string can be up to 255 characters long. Strings with length zero
are called “null” or “empty”.

How BASIC Classifies Constants

When BASIC encounters a data constant in a statement, it must
determine the type of the constant: string, integer, single precision, or
double precision. First, we will list the rules BASIC uses to classify the
constant. Then we will show you how you can override these rules, if
you want a constant stored differently:

Rule 1
If the value is enclosed in double-quotes, it is a string.
For example:

HYESH
“8331 Waverly Way”
“1234567890”

are all classified as strings.
Rule 2

If the value is not in quotes, it is a number. (An exception to this rule
is during data input by an operator, and in DATA lists. See INPUT,
INKEY$, and DATA)

2-32

For example:

123001
1
~7.3214E + 6

are all numeric data.

Rule 3

Whole numbers in the range of —32768 to 32767 are integers.
For example:

12350
—-12
10012

are integer constants.

NOTE: If you enter a number as a constant in response to a
command that calls for an integer, and the number is out of integer
range, BASIC converts the number to single or double precision.
When the number is printed, it appears with a type-declaration tag at
the end.

Rule 4

If the number is not an integer and contains seven or fewer digits, it is
single precision.

For example:

1234567
—1.23
1.3321

are all classified as single precision.
Rule 5

If the number contains more than seven digits, it is double precision.
For example, these numbers:

1234567890123456
-1000000000000.1
2.777000321

are all classified as double precision.

Type Declaration Tags

You can override BASIC’s normal typing criteria by adding the
following “tags” at the end of the numeric constant:

! Makes the number single precision. For example, in the
statement:

2-33

A = 12,343678901234!

BASIC classifies the constant as single precision, and shortens it
to seven digits. However, if you tell BASIC to print the value of A,
only six digits are printed out:

12,3457

E Single-precision exponential format. The E indicates that the
constant is to be multiplied by a specific power of 10. For
example:

A = 1,2E5
stores the single-precision number 120000 in A.
Makes the number double precision. For example, in statement:
PRINT 3#/7

BASIC classifies the first constant as double precision before the
division takes place.

D Double-precision exponential format. The D indicates the
constant is to be multiplied by a specified power of 10. For
example, in:

A = 1,23456789D - 1
the double-precision constant has the value 0.123456789.

How BASIC Classifies Variables

When BASIC encounters a variable name in the program, it classifies
it as either a string, an integer, a single-precision number, or a
double-precision number.

BASIC classifies all variable names as single-precision initially. For
example:

AB AMOUNT XY L

are all single precision initially. If this is the first line of your program:
LP = 1.2

BASIC classifies LP as a single-precision variable.

However, you may assign different attributes to variables by using
definition statements at the beginning of your program:

DEFINT - Defines variables as integer

DEFDBL - Defines variables as double-precision

DEFSTR - Defines variables as string

DEFSNG - Defines variables as single-precision. (Since BASIC
classifies all variables as single precision initially

2-34

anyway, you would only need to use DEFSNG if one
of the other DEF statements was used).

For example:
DEFSTR L

makes BASIC classify all variables which start with L as string
variables. After this statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable
name by adding a type declaration tag at the end. The four types of
declaration tags for variables are:

% Integer
! Single precision
Double precision

$ String
For example:
1% FT% NUM% COUNTER%

are all integer variables, regardiess of what attributes have been
assigned to the letters |, F, N, and C.

T! RY! QUAN! PERCENT!

are all single-precision variables, regardless of what attributes have
been assigned to the letters T, R, Q, and P.

X# RR# PREV# LSTNUM#

are all double-precision variables, regardiess of what attributes have
been assigned to the letters X, R, P, and L.

Q$ CA$ WRD$ ENTRY$

are all string variables, regardless of what attributes have been
assigned to the letters Q, C, W, and E.

Note that any given variable name can represent four different
variables. For example:

AS5# A5! A5% A5%
are all valid and distinct variable names.

One further implication of type declaration: Any variable name
used without a tag is equivalent to the same variable name used with
one of the four tags. For example, after the statement:

2-35

DEFSTR C

the variable referenced by the name C1 is identical to the variable
referenced by the name C1$.

How BASIC Converts Numeric Data

Often your program might ask BASIC to assign one type of constant
to a different type of variable. For example:

A% = 2,34

In this example, BASIC must first convert the single-precision constant
2.34 to an integer in order to assign it to the integer variable A%.

You might also want to convert one type of variable to a different
type, such as:

Ak = A%
Al = A%
Al = AY

The conversion procedures are explained on the following pages.

Single or double precision to integer type
BASIC rounds the fractional portion of the number.

NOTE: The original value must be greater than or equal to — 32768,
and less than 32768.

Examples
A% = 327BB.7
assigns A% the value 32767.
A% = 2.,5D3
assigns A% the value 2500.
A% = -123,45678901234578
assigns A% the value —123.
A7 = -327BB.S
produces an Overflow Error (out of integer range).

Integer to single or double precision

No error is introduced. The converted value looks like the original
value with zeros to the right of the decimal place.

Examples
Az = 327G7
Stores 32767.000000000000 in A#.

2-36

Al = -1234
Stores — 1234.000 in Al.

Double to single precision

This involves converting a number with up to 16 significant digits into
a number with no more than seven digits. BASIC rounds the number
to seven significant digits. Before printing it, BASIC rounds it off to six
digits.
Examples

Al = 1,234567890124567
stores 1.234568 in Al. However, the statement:

PRINT A

displays the value 1.23457, because only six digits are displayed. The
full seven digits are stored in memory.

Al o= 1,3333333333333333
stores 1.333333 in Al

Single to double precision

To make this conversion, BASIC simply adds trailing zeros to the
single-precision number. If the original value has an exact binary
representation in single-precision format, no error is introduced. For
example:

A = 1.5

stores 1.5000000000000 in A#, since 1.5 does have an exact binary
representation.

However, for numbers which have no exact binary representation, an
error is introduced when zeros are added. For example:

Ax = 1,3
stores 1.299999952316284 in A#.

Because most fractional numbers do not have an exact binary
representation, you should keep such conversions out of your
programs. For example, whenever you assign a constant value to a
double-precision variable, you can force the constant to be double
precision:

A# = 1,3% Ax = 1,3D
both store 1.3 in A#.

Here is a special technique for converting a single precision value to
double precision, without introducing an error into the double-precision

2-37

C- How BASIC

value. It is useful when the single-precision value is stored in a
variable.

Take the single-precision variable, convert it to a string with STRS,
then convert the resultant string back into a number with VAL. That is,
use:

VAL(STR$(single-precision variable))
For example, the following program:

ig Al = 1.3
20 A# = Al
30 PRINT A=

prints a value of:
,299999952316284
Compare with this program:

19 AV = 1.3
20 A% = UAL(STR$(A))
30 PRINT A

which prints a value of:
1.3
The conversion in line 20 causes the value in Al to be stored
accurately in double-precision variable A#.
Illegal Conversions

BASIC cannot automatically convert numeric values to string, or vice
versa. For example, the statements:

A%
A7

1234
"1z34"

are illegal. They would return a “Type mismatch” error. (Use STR$
and VAL to accomplish such conversions.)

Manipulates Data

You have many fast methods you may use to get BASIC to count,
sort, test, and rearrange your data. These methods fall into two
categories:

1. Operators
a. numeric
b. string
c. relational
d. logical

2. Functions

2-38

Operators

An operator is the single symbol or word which signifies some action
to be taken on either one or two specified values referred to as
operands.

In general, an operator is used like this:

operand-1 operator operand-2
6 + 2

The addition operator + connects or relates its two operands, 6 and
2, to produce the result 8.

Operand-1 and -2 can be expressions.
A few operations take only one operand, and are used like this:

operator operand
- 5

The negative operator — acts on single operand 5 to produce the
result negative 5.

Neither 6 + 2 nor —5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A =B + 2
PRINT -5

Operators fall into four categories:

@ Numeric
@ String

@ Relational
® Logical

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands
must always be numeric, and the results they produce is one numeric
data item.

In the description below, we use the terms integer, single-precision,
and double-precision operations. Integer operations involve two-byte
operands, single-precision operations involve four-byte operands, and
double-precision operations involve eight-byte operands. The more
bytes involved, the slower the operation.

There are seven different numeric operators. Two of them, sign +
and sign —, are unary, that is, they have only one operand. A sign
operator has no effect on the precision of its operand.

2-39

For example, in the statement:
PRINT =77 +77

the sign operators — and + produce the values negative 77 and
positive 77, respectively.

NOTE: When no sign operator appears in front of a numeric term, +
is assumed.

The other numeric operators are all binary, that is, they all take two
operands.

These operators are, in order of precedence:

~ Exponentiation

*, / Multiplication, Division

—\, MOD Integer Division, Modulus Arithmetic

+,— Addition, Subtraction
Exponentiation

The symbol ~ denotes exponentiation. It converts both its operands
to single precision and returns a single-precision result.

NOTE: To enter the ~ operator, press (CLEARI().
For example:

PRINT 6°.,3
prints 6 to the .3 power.

Multiplication

The * operator is the symbol for multiplication. Once again, BASIC
uses the precision of the more precise operand to perform the
operation (the less precise operand is converted).

Examples:
PRINT 33% * 11%
integer multiplication is performed.
PRINT 33 % 11.1
PRINT 33% # 11
single-precision multiplication is performed.
PRINT 12.345678901234567 * 11
double-precision multiplication is performed.
Division
The / symbol is used to indicate ordinary division. Both operands are

converted to single precision or double precision, depending on their
original precision:

2-40

e If either operand is double precision, then both are converted to
double precision and eight-byte division is performed.

@ If neither operand is double precision, then both are converted to
single precision and four-byte division is performed.

Examples:
PRINT 3/4

single-precision division is performed.
PRINT 3.8/4

single-precision division is performed.
PRINT 3/1.,2345678901234567

double-precision division is performed.

Integer Division

The \ (backslash) is the symbol for integer division. Both operands are
rounded to integers, and the result is truncated to an integer.

Examples

PRINT 10 \ 4
prints 2.

PRINT 68 \ 6.99
prints 9.

Modulus Arithmetic

MOD is the operator for modulus arithmetic. Both operands are
rounded to integers. The result is the integer that is the remainder of
an integer division.

Examples
PRINT 10 MOD 3

prints 1. Ten divided by 3 is 3 with a remainder of 1.
PRINT 68 MOD 6,99

prints 5. 68 divided by 7 is 3 with a remainder of 5.

Addition

The + operator is the symbol for addition. The addition is done with
the precision of the more precise operand (the less precise operand is
converted).

2-41

For example, when one operand is integer type and the other is
single precision, the integer is converted to single precision and
four-byte addition is performed. When one operand is single precision
and the other is double precision, the single-precision number is
converted to double precision and eight-byte addition is performed.

Examples:
PRINT 2 + 3
integer addition is performed.
PRINT 3.1 + 3
single-precision addition is performed.
PRINT 1.2345678901234567 + 1
double-precision addition is performed.

Subtraction

The — operator is the symbol for subtraction. As with addition, the
operation is done with the precision of the more precise operand (the
less precise operand is converted).

Examples:
PRINT 33 --11
integer subtraction is performed.
PRINT 33 - 11.1
single-precision subtraction is performed.
PRINT 12,345678901234567 - 11
double-precision subtraction is performed.

String Operator

BASIC has a string operator (+) which allows you to concatenate
(link) two strings into one. This operator should be used as part of a
string expression. The operands are both strings and the resulting
value is one piece of string data.

The + operator links the string on the right of the sign to the string on
the left. For example:

PRINT "CATS" + “LOVE" + "MICE"
prints:
CATSLOVEMICE

Since BASIC does not allow one string to be longer than 255
characters, you will get an error if your resulting string is too long.

2-42

Relational Operators

Relational operators compare two numerical or two string expressions
to form a relational expression. This expression reports whether the
comparison you set up in your program is true or false. It returns a
—1 if the relation is true; a 0 if it is false.

Numeric Relations

This is the meaning of the operators when you use them to compare
numeric expressions:

< Less than

> Greater than

= Equal to
<> or >< Not equal to
=< or <= Less than or equal to
=> Oor >= Greater than or equal to

Examples of true relational expressions:

1 < 2
2 <> 5
2 <= 5
2 <= 2
5 > 2
7 = 7

String Relations

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead of
comparing numerical magnitudes, the operators compare their ASCII
sequence. This allows you to sort string data:

< Precedes
> Follows
>< or <> Does not have the same precedence
<= Precedes or has the same precedence
>= Follows or has the same precedence

BASIC compares the string expressions on a character-by-character
basis. When it finds a non-matching character, it checks to see which
character has the lower ASCII code. The character with the lower
ASCII code is the smaller (precedent) of the two strings.

NOTE: Appendix C contains a listing of ASCII codes for each
character.

Examples of true relational expressions:
“A” < “B”

The ASCII code for A is decimal 65; for B it's 66.
“CODE” < “COOL”

2-43

The ASCII code for O is 79; for D it's 68.

If while making the comparison, BASIC reaches the end of one string
before finding non-matching characters, the shorter string is the
precedent. For example:

“TRAIL” < “TRAILER”

Leading and trailing blanks are significant. For example:
AT <A

ASCII for the space character is 32; for A, it's 65.
“Z-80" < “Z-80A”

The string on the left is four characters long; the string on the right is
five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN
statement. For example:

IF A& = 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1. If it is, BASIC prints the
message.

IF A% <« Bs THEN 50

if string A$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "YES" THEN PRINT A%
if R$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return the
true or false results of a test. For example:

PRINT 7 = 7

prints — 1 since the relation tested is true.
PRINT "A" > "B"

prints 0 because the relation tested is false.

Logical Operators

Logical operators make logical comparisons. Normally, they are used
in IF/THEN statements to make a logical test between two or more
relations. For example:

IF A =1 OrR C = 2 THEN PRINT X

The logical operator, OR, compares the two relations A = 1 and
C=2

2-44

Logical operators may also be used to make bit comparisons of two
numeric expressions.

For this application, BASIC does a bit-by-bit comparison of the two
operands, according to predefined rules for the specific operator.

NOTE: The operands are converted to integer type, stored internally
as 16-bit, twos complement numbers. To understand the results of
bit-by-bit comparisons, you need to keep this in mind.

The following table summarizes the action of Boolean operators in bit
manipulation.

Meaning of First Second
Operator Operation Operand Operand Result
AND When both bits 1 1 1
are 1, the re- 1 0 0
sults will be 1. 0 1 0
Otherwise, the 0 0 0

result will be 0.

OR Result will be 1 1 1 1
unless both bits 1 0 1

are 0. 0 1 1

0 0 0

NOT Result is oppo- 1 0
site of bit. 0 1

XOR When one of the bits 1 1 0
is 1, the result is 1 0 1

1. Otherwise, the 0 1 1

result is 0. 0 0 0

EQV When both bits are 1 1 1
1 or both bits 1 0 0

are 0,the 0 1 0

result is 1. 0 0 1

IMP The result is 1 1 1 1
unless the first 1 0 0

bit is 1 and the 0 1 1

second bit is 0. 0 0 1

Hierarchy of Operators

When your expressions have multiple operators, BASIC performs the
operations according to a well-defined hierarchy so that results are
always predictable.

Parentheses

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before evaluating

2-45

the rest of the expression. For example, the expression:

8 -(3-2

is evaluated like this:
3—-2=1
8 -1=7

With nested parentheses, BASIC starts evaluating the innermost level
first and works outward. For example:

4%((2 - (83— 4)
is evaluated like this:

3-4=—1
—~(-1) =3
4%3 =12

Order of Operations

When evaluating a sequence of operations on the same level of

parentheses, BASIC uses a hierarchy to determine what operation to
do first.

The two listings below show the hierarchy BASIC uses. Operators are
shown in decreasing order of precedence and are executed as
encountered from left to right:

For Numeric Operations:

() (Parentheses)
~ (Exponentiation)
+,— (Unary sign operands [not addition and
subtraction])

x,/ (Multiplication and division)
+,— (Addition and subtraction)
<> = <= > <>
NOT
AND
OR
XOR
EQV
IMP

For String Operations:

+
<,>,=<=,>=,<]>

For example, in the line:
X*X + 5728

BASIC finds the value of 5 to the 2.8 power. Next it multiplies XX,
and finally it adds the value of 5 to the 2.8. If you want BASIC to

2-46

perform the indicated operations in a different order, you must add
parentheses. For example:

X (X + 5)"2.8
or
X=X+ (672.8)
Here's another example:
IF ¥ + @ 0OR Y > @ AND Z = 1 THEN GOTOD 255

The relational operators = and > have the highest precedence, so
BASIC performs them first, one after the next, from left to right. Then
the logical operations are performed. AND has a higher precedence
than OR, so BASIC performs the AND operation before OR.

If the above line looks confusing because you can’t remember which
operator is precedent over which, then you can use parentheses to
make the sequence obvious:

IF X = @ OR ((¥ » @) AND (2 = 1)) THEN GOTO £33

Functions

A function is a built-in sequence of operations which BASIC performs
on data. BASIC functions save you from having to write a BASIC
routine, and they operate faster than a BASIC routine would.

Examples:
SQR (A + B)

tells BASIC to compute the square root of (A + 6).
MID$ (A%$,3:2)

tells BASIC to return a substring of the string A$, starting with the
third character, with a length of 2.

BASIC functions are described in more detail in Chapter 7.

If the function returns numeric data, it is a numeric function and may
be used in a numeric expression. If it returns string data, it is a string
function and may be used in a string expression.

D- How to Construct an Expression

Understanding how to construct an expression will help you put
together powerful statements — instead of using many short ones. In
this section we will discuss the two kinds of expressions you may
construct:

@ Simple
@ Complex

as well as how to construct a function.

2-47

As we have stated before, an expression is actually data. This is
because once BASIC performs all the operations, it returns one data
item. An expression may be string or numeric. It may be composed
of:

@ Constants
@ Variables
@ QOperators
@ Functions

Expressions may be either simple or complex:

A simple expression consists of a single term: a constant, variable
or function. If it is a numeric term, it may be preceded by an optional
+ or — sign, or by the logical operator NOT.

For example:
+A 33 -5 SQR(8)

are all simple numeric expressions, since they only consist of one
numeric term.

A$ STRINGS (20,A%) “WORD” “M”

are all simple string expressions, since they only consist of one string
term.

Here's how a simple expression is formed:

oY — CONSTANT |
s

VARIABLE
- t FUNCTION |

A complex expression consists of two or more terms (simple
expressions) combined by operators. For example:

A1 X+32-Y 1=1 AANDB ABS(B)+LOG(2)

are all examples of complex numeric expressions. (Notice that you
can use the relational expression (1=1) and the logical expression (A
AND B) as a complex numeric expression since both actually return
numeric data.)

A$ + B$ “Z" + Z$ STRING$(10, “A”) + “M”

are all examples of complex string expressions.

2-48

This is how a complex numeric expression is formed:

SIMPLE -
EXPRESSION

This is how a complex string expression is formed:

Most functions, except functions returning system information, require
that you input either or both of the following kinds of data:

@ One or more numeric expressions
® One or more string expressions

This is how a function is formed:

2-49

If the data returned is a number, the function may be used as a term
in a numeric expression. If the data is a string, the function may be
used as a term in a string expression.

SIN(A) STR$(X) VAL(A) LOG(.53)

are all examples of functions.

2-50

Chapter 5/ Disk Files

You may want to store data on your disk for future use. To do this,
you need to store the data in a “disk file.” A disk file is an organized
collection of related data. It may contain a mailing list, a personnel
record, or almost any kind of information. This is the largest block of
information on disk that you can address with a single command.

To transfer data from a BASIC program to a disk file, and vice versa,
the data must first go through a “buffer”. This is an area in memory
where data is accumulated for further processing.

With BASIC, you can create and access two types of disk files. The
difference between these two types is that each is created in a
different “mode.” The mode you choose determines what kind of
access you will have to the file: sequential access or direct access.

Sequential-Access Files

With a sequential-access file, you can only access data in the same

order it was stored: sequentially. To read from or write to a particular
section in the file, you must first read through all the contents in the

file until you get to the desired section.

Data is stored in a sequential file as ASCII characters. Therefore, it is
ideal for storing free-form data without wasting space between data
items. However, it is limited in flexibility and speed.

The statements and functions used with sequential files are:

OPEN WRITE# EOF
PRINT# INPUT# LOC
PRINT# USING LINE INPUT# CLOSE

These statements and functions are discussed in more detail in
Chapters 6 and 7.

Creating a Sequential-Access File

1. To create the file, OPEN it in “O” (output) mode and assign it a
buffer number (from 1 to 15).

Example
OPEN "O"4s 1 "LIST/EMP"

opens a sequential output file named LIST/EMP and gives buffer 1
access to this file.

2. To input data from the keyboard into one or more program
variables, use either INPUT or LINE INPUT. (The difference
between these two statements is that each recognizes a different
set of “delimiters”. Delimiters are characters that define where a
data item begins or ends).

2-51

Example
LINE INPUT, "NAME? "5 N%
inputs data from the keyboard and stores it in variable N$.

. To write data to the file, use the WRITE# statement (you can also
use PRINT#, but make sure you delimit the data).

Example
WRITE# 1, N%

writes variable N$ to the file, using buffer 1 (the buffer used to
OPEN the file). Remember that data must go through a buffer
before it can be written to a file.

. To ensure that all the data was written to the file, use the CLOSE
statement.

Example
CLOSE 1

closes access to the file, using buffer 1 (the same buffer used to
OPEN the file).

Sample Program

1@ OPEN "O"s 1 "LIST/EMP"
2¢ LINE INPUT "NAMET "s5N&%
3@ IF N$ = "DONE" THEN G@
43 WRITE# 1+ N%

5@ PRINT: GOTO 2@

6@ CLOSE 1

RUN

NOTE: The file “LIST/EMP” stores the data you input through the
aid of the program, not the program itself (the program
manipulates data). To save the program above, you must assign it
a name using the SAVE command (refer to Chapter 1).

Example
SAVE "PAYROLL"
would save the program under the name “PAYROLL”.

NOTE: Every time you modify a program, you must SAVE it again
(you can use the same name); otherwise, the original program
remains on disk, without your latest corrections.

. To access data in the file, reOPEN it in the “I” (input) mode.
Example
OPEN "I", 1, "LIST/EMP"

2-52

OPENSs the file named LIST/EMP for sequential input, using
buffer 1.

6. To read data from the file and assign it to program variables, use
either INPUT# or LINE INPUT#.

Examples
INPUT# 1+ N%$

reads a string item into N$, using buffer 1 (the buffer used when
the file was OPENed).

LINE INPUT# 1, N$
reads an entire line of data into N$, using buffer 1.

INPUT# and LINE INPUT# each recognize a different set of
“delimiters” for reading data from the file. Delimiters are characters
that define the beginning or end of a data item. See Chapter 7 for
a detailed explanation of these statements.

Sample Program

1@ OPEN "I", 1 "LIST/EMP"
20 IF EOF{(1), THEN 120

30 INPUT# 1, N%

49 PRINT N#%

5@ GOTO Z@

100 CLOSE

Updating a Sequential-Access File
1. To add data to the file, OPEN it in “E” (extend) mode.
OPEN “"E"» 1, "LIST/EMP"

opens the file LIST/EMP so that it can be extended. The data you
enter is appended to LIST/EMP.

2. To enter new data to the file, follow the same procedure as for
entering data in “O” mode.

The following program illustrates this technique. It builds Upon the
file we previously created under the name LIST/EMP.

NOTE: Read through the entire program first. If you encounter
BASIC words (commands or functions) that are unfamiliar to you,
refer to Chapter 7 for their definitions.

NEW

1¢ OPEN "E"s 1+ "LIST/EMP"

20 LINE INPUT "TYPE A NEMW NAME OR PRESS <Nx"3 N%
30 IF N% = "N" THEN G@

49 WRITE# 1, N$%
50 GOTO 20
B¢ CLOSE

2-53

If you want the program to print on your display the information
stored in the updated file, add the following lines:

79 OPEN "I"s 1+ "LIST/EMP"
@ IF EOF(1) THEN Z00@

99 INPUT# 1, N%

100 PRINT N%

112 GOTO 82

2000 CLOSE

RUN

Once you have RUN this program, SAVE it.
Example

SAVE "PAYROLLZ" ‘sauves the new prodgram

Direct-Access Files

With a direct-access file, you can access data almost anywhere on
disk. It is not necessary to read through all the information, as with a
sequential-access file. This is possible because in a direct-access file,
information is stored and accessed in distinct units called “records”.
Each record is numbered.

Creating and accessing direct-access files requires more program
steps than sequential-access files. However, direct-access files are
more flexible and easier to update.

One important note: BASIC allocates space for records in numeric
order. That is, if the first record you write to the file is number 200,
BASIC allocates space for records 0 through 199 before storing
record 200 in the file.

The maximum number of logical records is 65,535. Each record may
contain between 1 and 256 bytes.

The statements and functions used with direct-access files are:

OPEN FIELD LSET/RSET
GET PUT CLOSE
LOC MKD$ MKI$
MKS$ CVvD CVI

CVS

These statements and functions are discussed in more detail in
Chapters 6 and 7.

Creating a Direct-Access File

1. To create the file, OPEN it for direct access in “D” mode (“R” may
also be used. It stands for “random access”, which is simply
another name for direct access).

2-54

Example
OPEN, “D"s 1, "LISTING", 32

opens the file named “LISTING”, gives buffer 1 direct access to
the file, and sets the record length to 32 bytes. (If the record length
is omitted, the default is 256 bytes). Remember that data is
passed to and from disk in records.

2. Use the FIELD statement to allocate space in the buffer for the
variables that will be written to the file. This is necessary because
you must place the entire record into the buffer before putting it
into the disk file.

Example
FIELD 1, 20 AS N$, 4 A5 A%,8 AS P$

allocates the first 20 positions in buffer 1 to string variable N$, the
next four positions to A$, and the next eight positions to P$. N$,
A$ and P$ are now “field names”.

3. To move data into the buffer, use the LSET statement. Numeric
values must be converted into strings when placed in the buffer.
To do this, use the “make” functions: MKI$ to make an integer
value into a string, MKS$ for a single-precision value, and MKD$
for a double-precision value.

Example

LSET N#&=X
LSET A%=MKS$(AMT)

Note: RSET right justifies a string into the buffer. For example, RSET
N$ = X$.

4. To write data from the buffer to a record (within a direct-access
disk file), use the PUT statement.

PUT 1. CODEY

writes the data from buffer 1 to a record with the number CODE%.
(The percentage sign at the end of a variable specifies that it is an
integer variable.)

The following program writes information to a direct-access file:

1@ OPEN D"y 1, "LISTING", 32

20 FIELD 1, 20 AS N%$: 4 A5 A%, B A5 P%
3¢ INPUT "2-DIGIT CODE, @ TO END"3 CODEZ
49 IF CODEY = @ THEN 1390

3O INPUT "NAME"3S X%

6@ INPUT "AMOUNT": AMT

7@ INPUT "PHONME"3 TEL®$

80 LSET N&%
890 LSET A%

\;
1

MRKS$ (AMT)

2-55

1808 LSET P$ = TELS%$
119 PUT 1+ CODEZ
120 GOTO 3@

139 CLOSE 1

The two-digit code that you enter in line 30 becomes a record
number. That record number will store the name(s), amount(s) and
phone number(s) you enter when lines 50, 60 and 70 are
executed. The record is written to the file when BASIC executes
the PUT statement in line 110.

After typing this program, SAVE it and RUN it. Then, enter the
following data:

Z-DIGIT CODEs @ TO ENDT™ Z@
NAME? SMITH

AMOUNT®? 34,35

PHONE? S5G67-8000

2-DIGIT CODE, @ TO END? @

BASIC stored SMITH, 34.55, and 567-9000 in record 20 of file
LISTING.

Accessing a Direct-Access File
1. OPEN the file in “D” mode (“R” can also be used).
Example
OPEN "D", 1,"FILE",32

2. Use the FIELD statement to allocate space in the buffer for the
variables that will be read from the file.

Example
FIELD 1, 20 A5 N$, 4 AS A%$: B AS P%

3. Use the GET statement to read the desired record from a direct
disk file into a buffer.

Example
GET 1, CODEY
gets the record numbered CODE% and reads it into buffer 1.

4. Convert string values back to numbers using the “convert”
functions: CVI for integers, CVS for single-precision values, and
CVD for double-precision values.

Example

PRINT N#%
PRINT CUS(A%)

2-56

The program may now access the data in the buffer.

The following program accesses the direct-access file “LISTING”
(created with the previous program). When BASIC executes line
30, enter any valid record number from “LISTING”. This program
will print the contents of that record.

1@ OPEN "D"s 1 "LISTING", 3Z

20 FIELD 1,20 AS N%,4 AS A%:8 AS P%

3¢ INPUT "2-DIGIT CODE, @ TO END"§ CODE%
35 IF CODEY = 0 THEN 1000

49 GET =1, CODEZ

S0 PRINT N#%

B® PRINT USING "$$#,##"i CUS(A%)

70 PRINT P$: PRINT

8@ GOTO 3@

1000 CLOSBE 1

After typing this program, SAVE it and RUN it. When BASIC asks
you to enter a 2-digit code, enter 20 (the record we created
through the previous program). Your display should show:

2-DIGIT CODEs @ TO END? 20
SMITH

$34.,55

567-900¢

If you entered a record number which is not a part of “LISTING”,
your display would show:

$0.00

If you wanted to go back and update “LISTING”, simply LOAD the
previous program (the one that created “LISTING”) and RUN it.

2-57

Chapter 6/ Introduction To
BASIC Statements And Functions

BASIC is made up of keywords. These keywords instruct the
computer to perform certain operations.

Chapter 7 describes all of BASIC’s keywords. This chapter explains
the format used in Chapter 7. It also introduces you to BASIC's two
types of keywords: statements and functions.

Format for Chapter 7

Keyword

Syntax parameter(s) or (expression(s))

Brief definition of keyword.
Detailed definition of keyword.
Example(s)

Sample Program(s)

This format varies slightly, depending on the complexity of each
keyword. For instance, some keywords are used alone (without
parameters or expressions). Others have several possible syntaxes.
As a general rule, definitions for statements are longer than definitions
for functions. That is because a statement is a complete instruction to
BASIC, while a function is a built-in subroutine which may only be
used as part of a statement.

Some keywords have several sample programs, others don’t have
any at all. We added programs to illustrate useful applications which
may not be readily apparent. Remember that this manual is to be
used as a reference, not a tutorial on how to program in BASIC.

IMPORTANT NOTE: BASIC for TRSDOS Version 6 requires that
keywords be delimited by spaces. This means that you must leave a
space between a keyword and any variables, constants or other
keywords. The only exceptions to this rule are characters which are
shown as part of the syntax of the keyword.

For example, if you typed:
DELETE.

BASIC would return a “Syntax error.”” You must leave a blank space
between the word DELETE and the period.

For a definition of the terms and notation used in Chapter 7, see page
2-4 of the Introduction.

2-59

Statements

A program is made up of lines; each line contains one or more
statements. A statement tells the computer to perform some operation
when that particular line is executed. For example,

19@¢ STOP

tells the computer to stop executing the program when it reaches line

100.

Statements for assigning values to variables and defining memory

space:
CLEAR

COMMON
DATA

DEFDBL
DEF FN

DEFINT
DEFSNG
DEFSTR
DEF USR
DIM
ERASE
LET

MID$
OPTION BASE

RANDOM
READ

RESTORE
SWAP

clears all variables, allocates memory and
stack space.

passes variables to a CHAINed program.
stores data in your program so that you may
assign it to a variable.

defines variables as double precision.
defines a function according to your
specifications.

defines variables as integers.

defines variables as single precision.
defines variables as strings.

defines the entry point for USR routines.
dimensions an array.

erases an array.

assigns a value to a variable (the keyword
LET may be omitted).

replaces a portion of a string.

declares the minimum value for array
subscripts.

reseeds the random number generator.
reads data stored in the DATA statement and
assigns it to a variable.

restores the DATA pointer.

exchanges the values of variables.

Statements for altering program sequence:

CHAIN

END
FOR/NEXT
GOSUB
GOTO

IF... THEN ... ELSE

ON...GOSuUB

loads another program and passes variables
to the current program.

ends a program.

establishes a program loop.

transfers program control to the subroutine.
transfers program control to the specified line
number.

evaluates an expression and performs an
operation if conditions are met.

evaluates an expression and branches to a
subroutine.

2-60

ON...GOTO
RETURN

STOP
WHILE . .. WEND

WAIT

evaluates an expression and branches to
another program line.

returns from a subroutine to the calling
program.

stops program execution.

executes statements in a loop as long as a
given condition is true.

suspends program execution while monitoring
the status of a machine input port.

Statements for storing and accessing data on disk:

CLOSE
FIELD

GET

INPUT#

LINE INPUT#
LSET

OPEN
PRINT#
PRINT# USING

PUT
RSET

WRITE#

closes access to a disk file.

organizes a direct-access buffer.

gets a record from a direct-access file.
inputs data from a disk file.

inputs an entire line from a disk file.

moves data (and left-justifies it) to a field in a
direct-access file buffer.

opens a disk file.

writes data to a sequential disk file.

writes data to a disk file using the specified
format.

puts a record into a direct-access file.
moves data (and right-justifies it) to a field in
a direct-access file buffer.

writes data to a sequential file.

Statements for debugging a program:

CONT
ERL

ERR

ERROR

ON ERROR GOTO
RESUME

TROFF

TRON

continues program execution.

returns the line number where an error
occurred.

returns an error code after an error.
simulates the specified error.

sets up an error-trapping routine.
terminates an error-handling routine.
turns the tracer off.

turns the tracer on.

Statements for inputting or outputting data to the video display or the

line printer:

CLS

INPUT

LINE INPUT
LIST

LLIST
LPRINT
PRINT
WIDTH

WRITE

clears the display.

inputs data from the keyboard.

inputs an entire line from the keyboard.

lists a program to the display.

lists program to line printer.

prints data at the line printer.

prints data to the display.

sets number of characters to print per line on
the display or line printer.

prints data on the display.

2-61

Statements for performing system functions or entering other modes
of operation:

AUTO automatically numbers program lines.

CALL calls an assembly-language subroutine.

DELETE erases program lines from memory.

DEF USR specifies the starting address of an
assembly-language subroutine.

EDIT edits program lines.

KILL deletes a disk file.

LOAD loads a program from disk.

MERGE merges a disk program with a resident
program.

NAME renames a disk file.

NEW erases a program from RAM.

ouT sends a byte to a machine output port.

POKE writes a byte into a memory location.

RENUM renumbers a program.

RUN executes a program.

SAVE saves a program on disk.

SOUND generates a sound

SYSTEM returns to TRSDOS.

Functions

A function is a built-in subroutine. It may only be used as part of a
statement.

Most BASIC functions return numeric or string data by performing
certain built-in routines. Special print functions are used to control the
video display.

Numeric Functions (return a number):

ABS computes the absolute value.

ASC returns the ASCII code.

ATN computes the arctangent.

CDBL converts to double precision.

CINT returns the largest integer not greater than
the parameter.

COS computes the cosine.

CSNG converts to single precision.

EXP computes the natural exponential.

FIX truncates to whole number.

FRE returns the number of bytes in memory not
being used.

INSTR searches for a specified string.

INP returns the byte read from a port.

INT returns the largest whole number not greater
than the argument.

LEN returns the length of the string.

LOG computes the natural logarithm.

2-62

MEM returns the amount of memory.

PEEK returns a byte from a memory location.
RND returns a pseudorandom number.

SGN returns the sign.

SIN calculates the sign.

SQR calculates the square root.

TAN computes the tangent.

USR calls an assembly-language subroutine.
VAL returns the numeric value of a string.
VARPTR returns an address for a variable or buffer.

String Functions (return a string value):

CHR$ returns the specified character.

DATE$ returns today’s date.

ERRS$ returns the latest TRSDOS error number and’
message.

HEX$ converts a decimal value to a hexadecimal
string.

LEFTS$ returns the left portion of a string.

MID$ returns the mid-portion of a string.

OCT$ converts a decimal value to an octal string.

RIGHTS returns the right portion of a string.

SPACES$ returns a string of spaces.

STR$ converts to string type.

STRING$ returns a string of characters.

TIMES$ returns the time.

Input/Output Functions (perform input/output to the keyboard, display,
line printer or disk files):

INKEY$ returns the keyboard character.

INPUTS returns a string of characters from the
keyboard.

POS returns the cursor column position on the
display.

ROW returns the row position on the display.

SPC prints spaces to the display.

CvD restores data from a direct disk file to double
precision.

CvI restores data from a direct disk file to integer.

CVS restores data from a direct disk file to single
precision.

EOF checks for end-of-file.

INPUTS$ inputs a string of characters from a sequential
disk file.

LOC returns the current disk file record number.

LOF returns the disk file's end-of-file.

MKI$ converts an integer value to a string for
writing it to a direct-access disk file.

MKS$ converts a single-precision number to a string
for writing it to a direct-access file.

MKD$ converts a double-precision value to a string

for writing it to a direct-access file.

2-63

Chapter 7/ Statements And Functions

ABS

Function
ABS(number)

Computes the absolute value of number.

ABS returns the absolute value of the argument, that is, the
magnitude of the number without respect to its sign.

If number is greater than or equal to zero, ABS(number) =number. If
number is less than zero, ABS(negative number) =number.

Example

¥ o= ABS(Y)
computes the absolute value of Y and assigns it to X.
Sample Program

19@ INPUT "WHAT'S THE TEMPERATURE OUTSIDE

(DEGREES F)"3i TEMP

110 IF TEMP < @ THEN PRINT “THAT'S" ABS(TEMP)
“BELOW ZERO! BRR!": END

12¢ IF TEMP = @ THEN PRINT "ZERO DEGREES! MITE
coLD!"s END

139 PRINT TEMP "DEGREES ABOVE ZERODT BALMY!":
END

2-65

ASC

Function
ASC(string)

Returns the ASCII code for the first character of string.

The value is returned as a decimal number. If string is null, an “llilegal
function call” error occurs.

Example
PRINT ASC("A")
prints 65, the ASCII code for “A”.

Sample Programs

ASC can be used to make sure that a program is receiving the proper
input. Suppose you've written a program that requires the user to
input hexadecimal digits 0-9, A-F. To make sure that only those
characters are input, and exclude all other characters, you can insert
the following routine.

199 INPUT "ENTER A HEXADECIMAL WUALUE
(@-9,A-F)"iN%$

110 A = ASCINS) ‘det ASCII code
IF Ax47 AND A<S58 OR A:>B4 AND A<L71 THEN
PRINT "OK.": GOTO 100

13¢ PRINT "WUALUE NOT OK." : GOTO 100

ASC can also be used to program the special function keys, as in the
following program.

i o8

199 CLS : PRINT "Enter ANY Kevhoard Character : 3
11@ IN$ = INKEY%$: IF IN% = "" THEN GOTO 118

120 A = ASCOINS)

138 IF A = 129 THEN INS$

CHR&(13) + "F1 KEY" +

CHR$(13)

1d4¢ IF A = 130 THEN IN$ = CHR#%(13) + "FZ KEY" +
CHR$(13)

15¢ IF A = 131 THEN IN$ = CHR$(13) + "F3 KEY" +
CHR$(13)

1680 PRINT IN%s
179 GOTO 11¢@
180 END

2-66

ATN

AUTO

Function

ATN(number)

Computes the arctangent of number in radians.

ATN returns the angle whose tangent is number. The result is always
single precision, regardless of number's numeric type.

To convert this value to degrees, multiply ATN(number) by 57.29578.
Example

¥o= ATN(Y/3)
computes the arctangent of Y/3 and assigns the value to X.

Statement
AUTO [line number][,increment]

Automatically generates a line number every time you press (ENTER).
Immediately following the line number, you can enter your text for that
line.

AUTO begins numbering at /ine and displays the next line using
increment. The default for both values is 10. A period (.) can be
substituted for line. In this case, BASIC uses the current line number.

IF AUTO generates a line number that has already been used, it
displays an asterisk after the number. To save the existing line, press
ENTER) immediately after the asterisk. AUTO then generates the next
line number.

To turn off AUTO, press (BREAK). The current line is canceled and
BASIC returns to command level.

2-67

Examples
AUTO
generates lines 10, 20, 30, 40.
AUTO 100, S0
generates lines 100, 150, 200, 250 . . .

CALL

Statement
CALL variable [(parameter list)]

Transfers program control to an assembly-language subroutine stored
at variable.

Variable contains the address where the subroutine starts in memory.
Variable may not be an array variable.

Parameter list contains the values that are passed to the external
subroutine. Parameter list may contain only variables.

A CALL statement with no parameters generates a simple Z-80
“CALL" instruction. The corresponding subroutine should return with a
simple “RET".

The method for passing parameters depends upon the number of
parameters to pass:

1. If the number of parameters is less than or equal to 3, they
are passed in the registers. HL contains the address pointing
to parameter 1. DE contains the address pointing to
parameter 2. BC contains the address pointing to parameter
3.

2. If the number of parameters is greater than 3, they are
passed as follows:

HL contains the address pointing to parameter 1.
DE contains the address pointing to parameter 2.

BC points to the low byte of a contiguous data block
containing parameters 3 through n (that is, to the low byte of
parameter 3).

2-68

CDBL

Note that with this scheme, the subroutine must know how many
parameters to expect in order to find them. The calling program is
responsible for passing the correct number of parameters.

When accessing parameters in a subroutine, remember that they are
pointers to the actual arguments passed.

NOTE: The number, type and length of the parameters in the calling
program must match with the parameters expected by the subroutine.
This applies to BASIC subroutines, as well as those subroutines
written in assembly language.

See also USR and VARPTR.
Example

11 MYROUT = &HDCGOQ
12@¢ CALL MYROUTC(I +JsK)

We assume that D000 is the address for an assembly-language
routine. The values of I, J, and K (which we also assume were given
elsewhere) are passed to that routine.

Function
CDBL(number)

Converts number to double precision.

CDBL returns a 17-digit value. This function may be useful if you want
to force an operation to be performed in double precision, even
though the operands are single precision or integers.

Sample Program

219 A=434.67
220 PRINT Asf CDBL(A)
RUN
434,67 454.6700134277344
Ready

2-69

CHAIN

Statement
CHAIN [MERGE] “filespec” [,[line] [,ALL] [,DELETE line-line]]

Loads a BASIC program named filespec, chains it to a “main”
program, and begins running it.

Filespec must have been saved in ASCII format before you can
CHAIN it. To do this, use SAVE with the ‘A’ option.

Line is the first line to be run in the CHAINed program. If omitted,
execution begins at the first program line of the CHAINed program.

The ALL option passes every variable in the main program to the
chained program. If omitted, the main program must contain a
COMMON statement to pass variables. If you will be CHAINing
subsequent programs (and passing variables), each new program
must contain a COMMON statement.

The MERGE option “overlays” the lines of filespec with the main
program. See MERGE to understand how BASIC overlays (merges)
program lines.

The DELETE option deletes lines in the overlay so that you can
MERGE in a new overlay.

Examples
CHAIN "PROGZ"

loads PROG2, chains it to the main program currently in memory, and
begins executing it.

CHAIN "SUBPROG/BAS" s ALL

loads, chains and executes SUBPROG/BAS. The values of all the
variables in the main program are passed to SUBPROG/BAS.

Sample Program 1

1@ REM THIS PROGRAM DEMONSTRATES CHAINING
USING COMMON TO PASS VARIABLES.
20 REM SAVE THIS MODULE ON DISK A8 "PROGL®
USING THE A OPTION,
30 DIM A%(Z) B3 ()
49 COMMON A%() +B%)
59 A%(1)="UVARIABLES IN COMMON MUST BE ASSIGNED "

2-70

B2 A%$(Z2)="UALUES BEFORE CHAINING"

7@ BE(1l)=""eB$(Z)=""

8@ CHAIN "PROGZ"

90 PRINT : PRINT B$(1): PRINT : PRINT B$(2):
PRINT

1909 END

Save this program as “PROG1", using the ‘A’ option (Type: SAVE
“filespec”, A). Type NEW, then enter the following program.

18 REM THE STATEMENT "DIM A$(Z):B&(Z2)" MAY
ONLY BE EXECUTED ONCE.

20 REM HENCEs IT DOES NOT APPEAR IN THIS
MODULE.,

38 REM SAVE THIS MODULE ON THE DISK AS “PROGZ"
USING THE A OPTION.

49 COMMON a%() +B$ ()

3¢ PRINT: PRINT A$(1)35A%(2)

G2 B%(1)="NOTE HOW THE OPTION OF SPECIFYING A
STARTING LINE NUMBER®

7@ B&(Z)="WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT IN ‘PROG17,"

80 CHAIN "PROGI" .90

8@ END

Save this program as “PROG2”, using the ‘A’ option. Load PROG1
and run it. Your screen should display:

VYARIABLES IN COMMON MUST BE ASSIGNED WYALUES
BEFORE CHAINING., NOTE HOW THE OPTION OF
SPECIFYING A STARTING LINE NUMBER WHEN
CHAINING AYDIDS THE DIMENSION STATEMENT IN
‘PROGL .

Type NEW and this program:
Sample Program 2

19 REM THIS PROGRAM DEMONSTRATES CHAINING
USING THE MERGE AND ALL OPTIONS.

2@ A®s="MAINPROG"

30 CHAIN MERGE "OWVRLAYLl", 1000, ALL

49 END

Save this program as “MAINPROG”, using the ‘A’ option. Enter NEW,
then type:

1000 PRINT A%$3" HAS CHAINED TO OURLAYL.”

1010 A%="0URLAY1"

1020 Bs="0URLAYZ"

193¢ CHAIN MERGE "OURLAYZ", 1000, ALL » DELETE
1020-1040

lede END

2-71

CHRS$

Save this program as “OVRLAY1”, using the ‘A’ option. Enter NEW,
then type:

1006 PRINT A%: " HAS CHAINED TO "iBsi".®
118 END

Save this program as “OVRLAY2", using the ‘A’ option. Load
MAINPROG and run it. Your screen should display:

MAINPROG HAS CHAINED TO OURLAYL.
DURLAY1 HAS CHAINED TO OUVRLAYZ.

NOTE

The CHAIN statement with the MERGE option leaves the files
open and preserves the current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the chained
program. That is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEF FN statements containing shared variables must be restated
in the chained program.

When using the MERGE option, user-defined functions should be
placed before any CHAIN MERGE statements in the program.
Otherwise, the user-defined functions will be undefined after the
merge is complete.

Function
CHRS$(code)

Returns the character corresponding to an ASCII or control code.

This is the inverse of the ASC function. CHR$ is commonly used to
send a special character to the display.

Examples
PRINT CHR$(35)

prints the character corresponding to ASCII code 35 (the character
is #).

2-72

CINT

PRINT CHR&(1G)

puts the display into its black-on-white mode, also called reverse
video mode. PRINT CHR$(28) returns it to white-on-black and
converts all reverse video characters into graphics characters. See
Appendix C for more information.

Sample Program

The following program lets you investigate the effect of printing codes
32 through 255 on the display. (Codes 0-31 represent certain control
functions.)

10@ CLS

i@ INPUT "TYPE IN THE CODE (32-233)"3 C
120 PRINT CHR%(C) 3

130 GOTO 11@

For a complete list and discussion of output to the video display, see
the Character Codes table in Appendix C. See also the sample
program given for the ASC function of BASIC.

Function
CINT(number)

Converts number to integer representation.
CINT rounds the fractional portion of number to make it an integer.

For example, PRINT CINT(1.5) returns 2; PRINT CINT(~- 1.5) returns
—2. The result is a two-byte integer.

Sample Program

PRINT CINT(17.65)
18
Ready

2-73

CLEAR

Statement
CLEAR [,memory location] [,stack space]

Clears the value of all variables and CLOSEs all open files.

Memory location must be an integer. It specifies the highest memory
location available for BASIC. The default is the current top of memory
(as specified when BASIC was loaded or by the location of HIGHS).
This option is useful if you will be loading a machine-language
subroutine, since it prevents BASIC from using that memory area.

Stack space must also be an integer. This sets aside memory for
temporarily storing internal data and addresses during subroutine calls
and during FOR/NEXT loops. The default is 512 bytes or one-eighth
of the memory available, whichever is smaller. An “Out of memory”
error occurs if there is insufficient stack space for program execution.

NOTE: BASIC allocates string space dynamically. An “Out of string
space” error occurs only if no free memory is left for BASIC.

Since CLEAR initializes all variables, you must use it near the
beginning of your program, before any variables have been defined
and before any DEF statements.

Examples:
CLEAR

clears all variables and closes all files.
CLEAR sy 45000

clears all variables and closes all files; makes 45000 the highest
address BASIC may use to run your programs.

CLEAR: Glood., 200

clears all variables and closes all files; makes 61000 the highest
address BASIC may use to run your programs, and allocates 200
bytes for stack space.

2-74

CLOSE

Statement
CLOSE [buffer, . ..]

Closes access to a file.

Buffer is a number from 1 - 15 used to OPEN the file. If no buffers
are specified, BASIC closes all open files.

This command terminates access to a file through the specified
buffer. If a buffer was not assigned in a previous OPEN statement,
then

CLOSE buffer
has no effect.

Do not remove a diskette which contains an open file. CLOSE the file
first. This is because the last records may not have been written to
disk yet. Closing the file writes the data, if it hasn't already been
written.

See also OPEN and the chapter on ‘Disk Files .
Examples
CLOSE 1 2+ 8

terminates the file assignments to buffers 1,2, and 8. These buffers
can now be assigned to other files with OPEN statements.

CLOSE FIRSTY + COUNTZ

terminates the file assignment to the buffer specified by the sum
FIRST% + COUNT%.

2-75

CLS

Statement
CLS

Clears the screen and moves the cursor to the upper-left corner. All
characters on the screen are erased.

Sample Program

34@ CLS

350 FOR I = 1 TO 24

5B® PRINT STRING® (79:33)
5370 NEXT I

380 GOTO S5d@

COMMON

Statement
COMMON variable, . . .

Reserves space for variables so they can be passed to a CHAINed
program.

COMMON may appear anywhere in a program, but we recommend
using it at the beginning.

The same variable cannot appear in more than one COMMON
statement. To specify array variables, append “()” to the variable
name. If all variables are to be passed, use CHAIN with the ALL
option and omit the COMMON statement.

NOTE: array variables used in a COMMON statement must have
been declared in a DIM statement.

2-76

CONT

Example

9@ DIM D(5¢)
10 COMMON As By Cs» DCO)+GS
11@ CHAIN "PROG3", 10

line 100 passes variables A, B, C, D and G$ to the CHAIN command
in line 110.

See also CHAIN.

Statement
CONT

Resumes program execution.

You may only use CONT if the program was stopped by the (BREAK
key, a STOP or an END statement in the program.

CONT is primarily a debugging tool. During a break or stop in
execution, you may examine variable values (using PRINT) or change
these values. Then type CONT (ENTER); execution continues with the
current variable values.

You cannot use CONT after editing your program lines or otherwise
changing your program. CONT is also invalid after execution has
ended normally.

Example
190 INPUT As B: C
20 K=A"2
3¢ L=B"3/ .26
49 STOP

5¢ M=C+40#K+100: PRINT ™

Run this program. (To enter the ~, press (G).) You will be
prompted with:

Type:
i+ 2+ 3 (ENTER

2-77

COS

The computer displays:
Break in 40
You can now type any immediate command.
For example:
PRINT L
displays 30.7692. You can also change the value of A, B, or C.
For example:
C =4
changes the value of C in the program. Type:
CONT
your screen displays: 144.
See also STOP.

Function
COS(number)

Computes the cosine of number.

COS returns the cosine of number in radians. The number must be
given in radians. When number is in degrees, use COS(number *
.01745329).

The result is always single precision.
Examples
¥ o= COS(X % ,@1745329)
stores in Y the cosine of X, if X is an angle in degrees.
PRINT CO8(5.8) - COS(85 % .42)
prints the arithmetic (not trigonometric) difference of the two cosines.

2-78

CSNG

Function
CSNG(number)

Converts number to single precision.

If number is double precision, when its single-precision value is
printed, only six significant digits are shown. BASIC rounds the
number in this conversion.

Example

PRINT CSNG(.1453885509)
prints .145389
Sample Program

280 U# = B76.2345678+#

290 PRINT WUs3 CENG(U#)

RUN

B76.,2345678000001 876,235
Ready

2-79

CVD, CVI, CVS

Function
CVD(eight-byte string)
CVS(four-byte string)
CVi(two-byte string)

Convert string values to numeric values.

These functions let you restore data to numeric form after it is read
from disk. Typically, the data has been read by a GET statement, and
is stored in a direct access file buffer.

CVD converts an eight-byte string to a double-precision number. CVS
converts a four-byte string to a single-precision number. CVI converts
a two-byte string to an integer.

CVD, CVI, and CVS are the inverses of MKD$, MKI$, and MKS$,
respectively.

Examples

Suppose the name GROSSPAYS$ references an eight-byte field in a
direct-access file buffer, and after GETting a record, GROSSPAY$
contains an MKD$ representation of the number 13123.38. Then the
statement

Ax = CUD(GROSEPAY$)

assigns the numeric value 13123.38 to the double-precision variable
A#.

Sample Program

This program reads from the file “TEST/DAT"”, which is assumed to
have been previously created. For the program that creates the file,
see MKD$, MKI$, and MKSS$.

1420 OPEN "D"s 1 "TEST/DAT": 14

14390 FIELD 1+ 2 A8 I1%, 4 A5 I2%: B A8 I3%
1449 GET 1

1439 PRINT CUIC(I1%), CUS(IZ%) ., CUD(I3%)
1460 CLOSE

NOTE: GET without a record number tells BASIC to get the first
record from the file, or the record following the last record accessed.

2-80

DATA

Statement
DATA constant, . ..

Stores numeric and string constants to be accessed by a READ
statement.

This statement may contain as many constants (separated by
commas) as will fit on a line. Each will be read sequentially, starting
with the first constant in the first DATA statement, and ending with the
last item in the last DATA statement.

Numeric expressions are not allowed in a DATA list. If your string
values include leading blanks, colons, or commas, you must enclose
these values in double quotation marks.

DATA statements may appear anywhere it is convenient in a
program. The data types in a DATA statement must match up with
the variable types in the corresponding READ statement, otherwise a
“Syntax error” occurs.

Examples

1349 DATA NEW YORK., CHICAGO: LOS ANGELES:
PHILADELPHIA: DETROIT

stores five string data items. Note that quote marks aren’t needed,
since the strings contain no delimiters and the leading blanks are not
significant.

1350 DATA 2,72 3,14159,: 0.2174533, 57.,29578
stores four numeric data items.
1360 DATA "SMITH: T.H."s 38, "THORN: J.R."s 41

stores both types of constants. Quote marks are required around the
first and third items because they contain commas (commas are
delimiters within data fields).

Sample Program

NEW

1@ PRINT “CITY", "STATE", "ZIP"

20 READ C%:5%:2Z

39 DATA "DENVER:": COLORADD, 80211

49 PRINT C%:5%:2

This program READS string and numeric data from the DATA
statement in line 30.

2-81

DATES

DATES$

Function

Returns today’s date.

The operator sets the date when TRSDOS is started up.
(This system supports dates between January 1, 1980 and December

31, 1987).

During a program, if you request the date, BASIC displays it in this

fashion:

#3712

/83

Sample Program

1090
1100

PRINT "Inventory Check:"

IF DATE$ = "@1/31/8@" THEN PRINT "Today is
the last davy of Januwary 1988. Time to
perform monthly inventory.": END

2-82

DEFDBL/INT/SNG/STR

Statement
DEFDBL letter, . ..

DEFINT letter, . . .
DEFSNG letter, . . .
DEFSTR letter, . ..

Defines any variables beginning with letter(s) as: (DBL) double
precision, (INT) integer, (SNG) single precision, or (STR) string.

NOTE: A type declaration character always takes precedence over a
DEF statement.

Examples

19 DEFDBL L-P

classifies all variables beginning with the letters L through P as
double-precision variables. Their values include 17 digits of precision,
though only 16 are printed out.

1@ DEFSTR A
classifies all variables beginning with the letter A as string variables.
1@ DEFINT I-N;s W,Z

classifies all variables beginning with the letters | through N, W and Z
as integer variables. Their values are in the range — 32768 to 32767.

1@ DEFSNG I+ Q-T

classifies all variables beginning with the letters | or Q through T as
single-precision variables. Their values include seven digits of
precision, though only six are printed out.

2-83

DEF FN

Statement
DEF FN function name [(variable, . . .)] =function definition

Defines function name according to your function definition.

Function name must be a valid variable name. The type of variable
used determines the type of value the function will return. For
example, if you use a single-precision variable, the function will
always return single-precision values.

Variable represents those variables in function definition that are to
be replaced when the function is called. If you enter several variables,
separate them by commas.

Function definition is an expression that performs the operation of the
function. A variable used in a function definition may or may not
appear as variable. If it does, BASIC uses its value to perform the
function. Otherwise, it uses the current value of the variable.

Once you define and name a function (by using this statement), you
can call it and BASIC performs the associated operations.

Examples
DEF FNR = RND(92)+9

defines a function FNR to return a random value between 10 and 99.
Notice that the function can be defined with no arguments.

210 DEF FNW# (A#,B#)=(A%-B#)*(A#-Bx)
280 T = FNW#(I#,J#%)

defines function FNW# in line 210. Line 280 calls that function and
replaces parameters A# and B# with parameters I# and J#. (We
assume that 1# and J# were assigned values elsewhere in the
program.)

NOTE: Using a variable as a parameter in a DEF FN statement has
no effect on the value of that variable. You may use that variable in
another part of the program without interference from DEF FN.

2-84

DEF USR

Statement
DEF USR[digit]=address

Defines the starting address for the assembly-language subroutine
identified by digit.

A program may contain any number of DEF USR statements, allowing
access to as many subroutines as necessary. However, only 10
definitions may be in effect at one time.

If you omit digit, BASIC assumes USRO.
See also USR, VARPTR and CALL.
Examples

DEF USR3 = &H7DOO

assigns the starting address 7D00 hexadecimal, 32000 decimal, to the
USRS call. When your program calls USR3, control branches to your
subroutine beginning at 7D00.

DEF USR = (BASE + 1B6)
assigns the starting address of BASE + 16 to the USRO subroutine.

2-85

DELETE

Statement
DELETE J/ine1 - line2

Deletes from line1 through line2 of a program in memory.

A period (“.”) can be substituted for either line7 or line2 to indicate
the current line number.

Examples
DELETE 7@

deletes line 70 from memory. If there is no line 70, an error will occur.

DELETE 50-11@

deletes lines 50 through 110 inclusive.
DELETE -4

deletes all program lines up to and including line 40.
DELETE -,

deletes all program lines up to and including the line that has just
been entered or edited.

DELETE .
deletes the program line that has just been entered or edited.

2-86

DIM

Statement

DIM array (dimension(s)), array (dimension(s)), . . .

Sets aside storage for arrays with the dimensions you specify.

Arrays may be of any type: string, integer, single precision or double
precision, depending on the type of variable used to name the array.
If no type is specified, the array is classified as single precision.

When you create the array, BASIC reserves space in memory for
each element of the array. All elements in a newly-created array are
set to zero (numeric arrays) or the null string (string arrays).

NOTE: The lowest element in a dimension is always zero, unless
OPTION BASE 1 has been used.

Arrays can be created implicitly, without explicit DIM statements.
Simply refer to the desired array in a BASIC statement. For example,

A(S) = 300

creates array A and assigns element A(5) the value of 300. Each
dimension of an implicitly-defined array is 11 elements deep,
subscripts 0 —10.

Examples
DIM ARC100)

sets up a one-dimensional array AR(), containing 101 elements:
AR(0), AR(1), AR(2), . .., AR(98), AR(99), and AR(100).

NOTE: The array AR() is completely independent of the variables
AR.

DIM L1%(B:25)

sets up a two-dimensional array L1%(,), containing 9 X 26 integer
elements, L1%(0,0), L1%(1,0), L1%(2,0), . . . ,L1%(8,0),

L1%(0,1), L1%(1,1), ... ,L1%(8,1), . .. ,L1%(0,25), L1%(1,25), . . .,
L1%(8,25).

Two-dimensional arrays like AR(,) can be thought of as a table in
which the first subscript specifies a row position, and the second
subscript specifies a column position:

2-87

B0
1.0

+
+

+

740
80

DIM B1(2:3:8)

sets up three arrays:

Bl
141

741
81

72
82

@3
143

743
83

CR(2:5:8)

1]

P23 @24
123 r2d

-
PJ 13
o

7423 724 7123
823 124 8325
LY$ (50 :2)

B1(,,) and CR (,,) are three-dimensional, each containing 3+*6+9
elements.

LY(,) is two-dimensional, containing 51=3 string elements.

EDIT

EDIT line

Statement

Enters the edit mode so that you can edit line.

See the chapter on the “Edit Mode” for more information.

Examples
EDIT

100

enters edit mode at line 100.

EDIT

enters edit mode at current line.

2-88

END

Statement
END

Ends execution of a program.

This statement may be placed anywhere in the program. It forces
execution to end at some point other than the last sequential line.

An END statement at the end of a program is optional.
Sample Program

4@ INPUT 81, 8BZ

5@ GOosuB i@

35 PRINT H

6@ END

100 H=50R(51%581 + SZ#52)
11@ RETURN

line 60 prevents program control from “crashing” into the subroutine.
Line 100 may only be accessed by a branching statement, such as
GOSUB in line 50.

2-89

EOF

Function
EOF(buffer)

Detects the end of a file.

This function checks to see whether all characters up to the
end-of-file marker have been accessed, so you can avoid “Input past
end” errors during sequential input.

EOF(buffer) returns 0 (false) when the EOF record has not been read
yet, and —1 (true) when it has been read. The buffer number must
access an open file.

Sample Program

The following sequence of lines reads numeric data from DATA/TXT
into the array A(). When the last data character in the file is read,
the EOF test in line 30 “passes”, so the program branches out of the
disk access loop.

147@ DIM ACled) ‘ASSUMING THIS IS8 A SAFE VALUE
1489 OPEN "I"s 1+ "DATA/TKT"

149 14 = @

130 IF EOF(1) THEN 13540

151@¢ INPUT#1, A(IZL)

1520 1% = 1% + 1

153¢ GOTO 1500

1549 REM PROG, CONT., HERE AFTER DISK INPUT

2-90

ERASE

Statement
ERASE array, . ..

Erases one or more arrays from a program.

This lets you to either redimension arrays or use their previously
allocated space in memory for other purposes.

If one of the parameters of ERASE is a variable name which is not
used in the program, an “lilegal Function Call” occurs.

Example

439 ERASBE CsF
469 DIM F(88)

line 450 erases arrays C and F. Line 460 redimensions array F.

2-91

ERL

Statement
ERL

Returns the line in which an error has occurred.

This function is primarily used inside an error-handling routine. If no
error has occurred when ERL is called, line number 0 is returned.
Otherwise, ERL returns the line number in which the error occurred. If
the error occurred in the command mode, 65535 (the largest number
representable in two bytes) is returned.

Examples
PRINT ERL
prints the line number of the error.
E = ERL
stores the error’s line number for future use.

For an example of how to use ERL in a program, see ERROR.

2-92

ERR

ERRS$

Statement
ERR

Returns the error code (if an error has occurred).

ERR is only meaningful inside an error-handling routine accessed by
ON ERROR GOTO. See Appendix D for a list of Error Codes.

Example
IF ERR = 7 THEN 1000 ELSE 2000

branches the program to line 1000 if the error is an “Out of Memory’
error (code 7); if it is any other error, control goes instead to line
2000.

For an example of how to use ERR in a program, see ERROR.

)

Function
ERRSS

Returns a system error number and message.

This function returns the number and description of the TRSDOS
error that caused the latest BASIC disk-related error. If no TRSDOS
error has occurred, ERRS$ returns a null string.

Example
PRINT “THE LATEST TRSDOS ERROR IS "3 ERRS%

prints the latest error number message.

2-93

ERROR

Statement
ERROR code

Simulates a specified error during program execution.

Code is an integer expression in the range 0 to 255 specifying one of
BASIC'’s error codes.

This statement is mainly used for testing an ON ERROR GOTO
routine. When the computer encounters an ERROR code statement, it
proceeds as if the error corresponding to that code had occurred.
(Refer to Appendix D for a listing of Error Codes and their meanings).

Example
ERROR 1

a “Next Without For” error (code 1) “occurs” when BASIC reaches
this line.

Sample Program

11 ON ERROR GOTO 400

120 INPUT "WHAT IS YOUR BET"3i B

13¢ IF B:5000® THEN ERROR 21 ELSE GOTO 420

4@ IF ERR = 21 THEN PRINT "HOUSE LIMIT IS
F3000"

419 IF ERL = 139 THEN RESUME 500

420 5 = S5+B

439 GOTO 120

5090 PRINT "THE TOTAL AMOUNT OF YDOUR BET IS"iS

510 END

This program receives and totals bets until one of them exceeds the
house limit.

2-94

EXP

Function
EXP(number)

Calculates the natural exponent of number.

Returns e (base of natural logarithms) to the power of number. This is
the inverse of the LOG function; therefore, number =
EXP(LOG(number)). The number you supply must be less than or
equal to 87.3365.

The result is always single precision.
Example

PRINT EXP(-2)
prints the exponential value .135335.
Sample Program

3192 INPUT "NUMBER"3F N
320 PRINT "E RAISED TO THE N POWER IS" EXP({N)

2-95

FIELD

Statement
FIELD buffer, length AS field name, ...

Divides a direct-access buffer into one or more fields. Each field is
identified by field name and is the length you specify.

Field name must be a string variable.

This divides a direct file buffer so that you can send data from
memory to disk and disk to memory. FIELD must be run prior to GET
or PUT.

Before “fielding” a buffer, use an OPEN statement to assign that
buffer to a particular disk file. (The direct access mode, i.e., OPEN
“D”, ... must be used.) The sum of all field lengths should equal the
record length assigned when the file was OPENed.

You may use the FIELD statement any number of times to “re-field” a
file buffer. “Fielding” a buffer does not clear the buffer's contents; only
the means of accessing it. Also, two or more field names can
reference the same area of the buffer.

See also the chapter on “Disk Files”, OPEN, CLOSE, PUT, GET,
LSET, and RSET.

Example
FIELD 3, 128 A5 A%, 128 AS B%

tells BASIC to assign two 128-byte fields to the variables A$ and BS.
If you now print A$ or BS$, you will see the contents of the field. Of
course, this value would be meaningless unless you have previously
used GET to read a 256-byte record from disk.

NOTE: All data — both strings and numbers — must be placed into
the buffer in string form. There are three pairs of functions (MKI$/CVI,
MKS$/CVS, and MKD$/CVD) for converting numbers to strings and
strings to numbers.

FIELD 3 16 AS NM%, 25 A5 AD$, 1@ AB C¥4$,: 2 AB
ST+ 7 A ZP%

assigns the first 16 bytes of buffer 3 to field NM$; the next 25 bytes to
ADS$; the next 10 to CY$; the next 2 to ST$; and the next 7 to ZP$.

2-96

FIX

Function
FIX(number)

Returns the truncated integer of number.

All digits to the right of the decimal point are simply chopped off, so
the resultant value is a whole number. For a negative, non-whole
number X, FIX(X) = INT(X) + 1. For all others, FIX(X) = INT(X).

The result is the same precision as the argument (except for the
fractional portion).

Examples

PRINT FIX (2.8)
prints 2.

PRINT FIX(-2,B)
prints -2.

2-97

FOR/NEXT

Statement
FOR variable = initial value TO final value [STEP increment]
NEXT [variable]

Establishes a program loop.

A loop allows for a series of program statements to be executed over
and over a specified number of times.

BASIC executes the program lines following the FOR statement until
it encounters a NEXT. At this point, it increases variable by STEP
increment. If the value of variable is less than or equal to final value,
BASIC branches back to the line after FOR, and repeats the process.
If variable is greater than final value, it completes the loop and
continues with the statement after NEXT.

If increment has a negative value, then the final value of variable is
actually lower than the initial value. BASIC always sets the final value
for the loop variable before setting the initial value.

NOTE: BASIC skips the body of the loop if initial value times the sign
of STEP increment exceeds final value times the sign of STEP
increment.

Example

2@ FOR H=1 TO -1@ BTEP -Z
30 PRINT H
49 NEXT H

the initial value of H times the sign of STEP increment is greater than
the final value of H times the sign of STEP increment, therefore
BASIC skips the body of the loop. (The sign of STEP increment is
negative in this case.)

Sample Program

BZ@ I=5

838 FOR I = 1 70 I + 5
84@ PRINT I3

85¢ NEXT

RUN

2-98

this loop is executed ten times. It produces the following output:
1 2 3 4 5 B8 7 8 9 1@

Nested Loops

FOR/NEXT loops may be “nested”. That is, a FOR ... NEXT loop
may be placed within the context of another FOR .. . NEXT loop.

The NEXT statement for the inside loop must appear before the
NEXT for the outside loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them.

Sample Program

g8¢ FOR I = 1 TO 3

89¢ PRINT "OUTER LOOP™
8909 FOR J4 = 1 TO 2

919 PRINT "INNER LOOP*
920 NEXT J

930 NEXT 1

This program performs three “outer loops™ and within each, two
“inner loops”.

The NEXT statement can be used to close nested loops by listing the
counter variables (but make sure not to type the variables out of
order). For example, delete line 920 and change 930 to:

NEXT Js I

NOTE: In nested loops, if the variable(s) in the NEXT statement is
omitted, the NEXT statement matches the most recent FOR
statement.

2-99

FRE

GET

Function
FRE(dummy number) or (dummy string)

Returns the number of bytes in memory not being used by BASIC.

NOTE: FRE forces a “garbage collection” before returning the number
of free bytes. This may take up to one and a half minutes. Using FRE
periodically results in shorter delays for each garbage collection.

Examples
PRINT FRE("44")

prints the amount of memory left.
PRINT FRE(44)

prints the amount of memory left.

Statement
GET buffer [,record]

Gets a record from a direct-access disk file and places it in a buffer.
Before using GET, you must OPEN the file and assign it a buffer.

When BASIC encounters GET, it reads the record number from the
file and places it into the buffer. The actual number of bytes read
equals the record length set when the file is OPENed.

If record is omitted, BASIC gets the next record (after the last GET)
and reads it into the buffer.

2-100

Examples
GET 1

gets the next record into buffer 1.
GET 1+ 25

gets record 25 into buffer 1.

GOSUB

Statement
GOSUB line

Goes to a subroutine, beginning at line.

You can call subroutine as many times as you want. When the
computer encounters RETURN in the subroutine, it returns control to
the statement which follows GOSUB.

GOSUB is similar to GOTO in that it may be preceded by a test
statement. Every subroutine must end with a RETURN.

Example

GOSUB 1000
branches control to the subroutine at 1000.
Sample Program

260 GOSuB 284

279 PRINT "BACK FROM SUBROUTINE": END
2890 PRINT "EXECUTING THE SUBROUTINE"
29@ RETURN

transfers control from line 260 to the subroutine beginning at line 280.
Line 290 instructs the computer to return to the statement immediately
following GOSUB.

2-101

GOTO

Statement
GOTO line

Goes to the specified line.

When used alone, GOTO line results in an unconditional (automatic)
branch. However, test statements may precede the GOTO to effect a
conditional branch.

You can use GOTO in the command mode as an alternative to RUN.
This lets you pass values assigned in the command mode to
variables in the execute mode.

Example

GOTO 100
transfers control automatically to line 100.
Sample Program

1@ READ R

¢ IF R = 13 THEN END
30 PRINT "R="IiR

4@ A=3.14%R"2

59 PRINT "AREA ="3A
G0 GOTO 1@

78 DATA 5,712 13
RUN

line 10 reads each of the data items in line 60; line 50 returns
program control to line 10. This enables BASIC to calculate the area
for each of the data items, until it reaches item 13.

NOTE: To enter the ~ symbol, press (CLEAR) ().

2-102

HEXS$

HEX$(number)

Function

Calculates the hexadecimal value of number.

HEXS returns a string which represents the hexadecimal value of the
argument. The value returned is like any other string: it cannot be

used in a numeric

expression.That is, you cannot add hex strings.

You can concatenate them, though.

Examples

PRINT HEX$(30) s HEX${(30)» HEX&(392)

prints the following strings:

1E

Y6 = HEX%$

32 5A

A/716)

Y$ is the hexadecimal string representing the integer quotient X/16.

IF... THEN. .. ELSE

Statement

IF expression THEN statement(s) or line
[ELSE statement(s) or line]

Tests a conditional expression and makes a decision regarding

program flow.

If expression is true, control proceeds to the THEN statement or line.
If not, control jumps to the matching ELSE statement, line, or down to
the next program line.

2-103

Examples
IF ¥ » 127 THEN PRINT "OUT OF RANGE" : END

passes control to PRINT, then to END if X is greater than 127. If X is
not greater than 127, control jumps down to the next line in the
program, skipping the PRINT and END statements.

If & <« B THEN PRINT "A < B"™ ELBE PRINT "B < A"

tests the first expression, if true, prints “A < B”. Otherwise, the
program jumps to the ELSE statement and prints “B < A",

IF ¥ » @ AND ¥ <% @ THEN ¥ = X + 18¢

assigns the value X + 180 to Y if both expressions are true.
Otherwise, control passes directly to the next program line, skipping
the THEN clause.

IF A% = "YES" THEN 210 ELSE IF A% = "NO" THEN
499 ELSE 379

branches to line 210 if A$ is YES. If not, the program skips over to
the first ELSE, which introduces a new test. If A$ is NO, then the
program branches to line 400. If A$ is any value besides NO or YES,
the program branches to line 370.

Sample Program

IF THEN ELSE statements may be nested. However, you must take
care to match up the IFs and ELSEs. (If the statement does not
contain the same number of ELSE’s and IF’s, each ELSE is matched
with the closest unmatched IF.)

1949 INPUT "ENTER TWO NUMBERS"3 A. B

105¢ IF A <= B THEN IF A < B THEN PRINT A3
ELLSE PRINT "NEITHER"3 ELSE PRINT B3

1p6B® PRINT "IS SMALLER THAN THE OTHER"

This program prints the relationship between the two numbers
entered.

2-104

INKEY$

INP

Function
INKEY$

Returns a keyboard character.

Returns a one-character string from the keyboard without having to
press (ENTER). If no key is pressed, a null string (length zero) is
returned. Characters typed to INKEY$ are not echoed to the display.

INKEYS$ is invariably put inside some sort of loop. Otherwise a
program execution would pass through the line containing INKEY$
before a key could be pressed.

Example

10 A% = INKEY®
20 IF A% = "" THEN 10

This causes the program to wait for a key to be pressed.

Function
INP(port)

Returns the byte read from a port.
INP is the complementary function of the OUT statement.

Port may be any integer from 0 to 255. For information on assigned
ports, see the Model 4/4P Technical Reference Manual.

Example
100 A=INP(42)

2-105

INPUT

Statement
INPUT [prompt string;] variable1, variable2, . ..

Inputs data from the keyboard into one or more variables.

When BASIC encounters this statement, it stops execution and
displays a question mark. This means that the program is waiting for
you to type data.

INPUT may specify a list of string or numeric variables, indicating
string or numeric data items to be input. For instance, INPUT X$, X1,
Z$, Z1 calls for you to input a string literal, a number, another string
literal, and another number, in that order.

The number of data items you supply must be the same as the
number of variables specified. You must separate data items by
commas.

Responding to INPUT with too many items, or with the wrong type of
value (including numeric type), causes BASIC to print the message
“?Redo from start”. No values are assigned until you provide an
acceptable response.

If a prompt string is included, BASIC prints it, followed by a question
mark. This helps the person inputting the data to enter it correctly. If
instead of a semicolon, you type a comma after prompt string, BASIC
suppresses the question mark when printing the prompt. Prompt
string must be enclosed in quotes. It must be typed immediately after
INPUT.

Examples
INPUT Y%

when BASIC reaches this line, you must type any number and press
(ENTER) before the program will continue.

INPUT SENTENCES$

when BASIC reaches this line, you must type in a string. The string
wouldn’t have to be enclosed in quotation marks unless it contained a
comma, a colon, or a leading blank.

2-106

INPUT#

INPUT "ENTER YOUR NAME AND AGE (NAME, AGE)":
N&gs A

would print a message on the screen which would help the person at
the keyboard to enter the right kind of data.

Sample Program

5¢ INPUT "HOW MUCH DO YOU WEIGH"j3 X
B¢ PRINT "ON MARS YOU WOULD WEIGH ABOUT"
CINT(X % ,38) "POUNDS."

Statement
INPUT# buffer, variable, . ..

Inputs data from a sequential disk file and stores it in a program
variable.

Buffer is the number used when the file was OPENed for input.

Variable contains the variable name(s) that will be assigned to the
item(s) in the file.

With INPUT#, data is input sequentially. That is, when the file is
OPENed, a pointer is set to the beginning of the file. The pointer
advances each time data is input. To start reading from the beginning
of the file again, you must close the file buffer and re-OPEN it.

INPUT# doesn’t care how the data was placed on the disk —
whether a single PRINT# statement put it there, or whether it

required ten different PRINT# statements. What matters to INPUT# is
the position of the terminating characters and the EOF marker.

When inputting data into a variable, BASIC ignores leading blanks.
When the first non-blank character is encountered, BASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The terminating characters vary,
depending on whether BASIC is inputting to a numeric or string
variable.

2-107

INPUTS

Numeric values: BASIC begins input at the first character which is
neither a space nor a carriage return. It ends input when it encounters
a space, carriage return, or a comma.

String values: BASIC begins input with the first character which is
neither a space nor carriage return. It ends input when it encounters a
carriage return or comma. One exception to this rule: If the first
character is a quotation mark(), the string will consist of all
characters between the first quotation mark and the second. Thus, a
quoted string may not contain a quotation mark as a character.

If the end-of-file is reached when a numeric or string item is being
INPUT, the item is terminated.

Examples
INPUT#1, AB

sequentially inputs two numeric data items from disk and places them
in A and B. Buffer #1 is used.

INPUT#4, A%, By C%

sequentially inputs three string data items from disk and places them
in A$, B$, and C$. Buffer #4 is used.

Statement
INPUTS$(number [,buffer])

Inputs a string of characters from either the keyboard or a sequential
disk file.

Number is the number of characters to be input. It must be a value in
the range 1 to 255. Buffer is a buffer which accesses a sequential
input file.

INPUTS$(number) inputs a string of characters from the keyboard.
When the program reaches this line, it stops until you (or any
operator) type number characters. (You don’t need to press to
signify end-of-line.) The character(s) you type are not displayed on
the screen. Any character, except (BREAK), is accepted for input. No
characters are echoed.

2-108

INPUTS$(number, buffer) inputs a string from a sequential disk file.
Buffer is the buffer associated with that disk file.

Examples
A% = INPUT$(S)

assigns a string of five keyboard characters to A$. Program execution
is halted until the operator types five characters.

At = INPUT$(11,3)

assigns a string of 11 characters to A$. The characters are read from
the disk file associated with buffer 3.

Sample Programs

This program shows how you could use INPUT$ to have an operator
input a password for accessing a protected file. By using INPUTS, the
operator can type in the password without anyone seeing it on the
video display. (To see the full file specification, run the program, then
type PRINT F$.)

110 LINE INMPUT "TYPE IN THE FILESPEC/EXT"§ F%

12@¢ PRINT "TYPE IN THE PASSWORD -- MUST TYPE 8
CHARACTERS: "3

130 P$ = INPUT®(8)

149 F$ = F$ + "," + P3%

In the program below, line 100 OPENSs a sequential input file (which
we assume has been previously created). Line 200 retrieves a string
of 70 characters from the file and stores them in T$. Line 300
CLOSEs the file.

19® OPEN "I", 24+ "TEST/DAT"
200 T$ = INPUT$(7@:2)
309 CLOSE

2-109

INSTR

Function
INSTR([integer,] string1, string2)

Searches for the first occurrence of string2 in string1, and returns the
position at which the match is found.

Integer specifies a position in string. If used it must be a value in the
range 1 to 255.

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of the
substring in the target string; otherwise, it returns zero. Note that the
entire substring must be contained in the search string, or zero is
returned.

Optional integer sets the position for starting the search. If omitted,
INSTR starts searching at the first character in string7.

Examples
In these examples, A$ = “LINCOLN”:
INSTR(A%, "INC")
returns a value of 2.
INSTR(AS, "12")
returns a zero.
INSTR(A%:» "LINCOLNABRAHAM")
returns a zero. For a slightly different use of INSTR, look at:
INSTR (3, "1232123", "12")
which returns 5.
Sample Program

The program below uses INSTR to search through the addresses
contained in the program’s DATA lines. It counts the number of
addresses with a specified county zip code (761—) and returns that

2-110

number. The zip code is preceded by an asterisk to distinguish it from
the other numeric data found in the address.

36@ RESTORE

37¢ COUNTER = @

392 READ ADDRESG%

395 IF ADDRESGY$ = "$END" THEN 410

4@0 IF INSTR(ADDRESS$: "#761") <> @ THEN COUNTER =
COUNTER + 1 ELSE 390

493 GOTO 390

41@ PRINT "NUMBER OF TARRANT COUNTY: TX
ADDRESSES IS" COUNTER: END

429 DATA "383¢ GORHAM DRIVE, BURLESON: TX
*76148"

439 DATA "71 FIRSTFIELD ROADs GAITHERSBURG: MD
*20760"

449 DATA "1000 TWO TANDY CENTER: FORT WORTH:
TH *761@2"

430 DATA "1BB633 SO0UTH CENTRAL EXPRESSHAY »
RICHARDSON, TX =#735080"

460 DATA "sSEND®

INT

Function
INT(humber)

Converts number to integer value.

This function returns the largest integer which is not greater than the
number. Number may be an expression.

The result has the same precision as the argument except for the
fractional portion. Number is not limited to the range —32768 to
32767.

Examples

PRINT INT(79.89)
prints 79.

PRINT INT (-12,11)
prints —13.

2-111

KILL

LEFTS

Statement
KILL “filespec”

“Kills” (deletes) filespec from disk.

You may KILL any type of disk file. However, if the file is currently
OPEN, a “File already open” error occurs. You must CLOSE the file
before deleting it.

Example
KILL "FILE/BAS"

deletes this file from the first drive which contains it.
KILL "DATA:z2"

deletes this file from Drive 2 only. BASIC does not check the other
drives.

Function
LEFT$(string,integer)

Returns the leftmost integer characters of string.

If integer is equal to or greater than LEN (string), the entire string is
returned.

Examples:

PRINT LEFT$("BATTLESHIPS": B)
prints BATTLE.

PRINT LEFT$("BIG FIERCE DOG", Z2)

since BIG FIERCE DOG is less than 20 characters long, the whole
phrase is printed.

2-112

LEN

Sample Program

740 A% = "TIMOTHY"
750 B% = LEFT$(A%: 3)
760 PRINT B$3 "--THAT'S SHORT FOR "5 A%

When this is run, BASIC prints:
TIM--THAT’S SHORT FOR TIMOTHY

Line 750 gets the three leftmost characters of A$ and stores them in
BS. Line 760 prints these three characters, a string, and the original
contents of A$.

Function
LEN(string)

Returns the number of characters in string.
Examples
% = LEN(SENTENCES$)
gets the length of SENTENCE$ and stores it in X.
PRINT LEN("CAMBRIDGE") + LEN("BERKELEY")
prints 17.

2-113

LET

Statement
[LET] variable = expression

Assigns the value of expression to variable.

BASIC doesn’t require assignment statements to begin with LET, but
you might want to use LET to be compatible with versions of BASIC
that do require it.

Examples
LET A% = "A ROSE IS A ROSE"
LET B1 = 1.23
LET ¥ = X - Z

In each case, the variable on the left side of the equals sign is
assigned the value of the constant or expression on the right side.

Sample Program

S50 P = 1@@01: PRINT "P =" P
560 LET P = 2001: PRINT "NOW P = "P

2-114

LINE INPUT

Statement
LINE INPUT[prompt string;] string variable

Inputs an entire line (up to 254 characters) from the keyboard.

LINE INPUT is a convenient way to input string data without having to

worry about accidental entry of delimiters (commas, quotation marks,
etc.).

LINE INPUT (the space is not optional) is similar to INPUT, except:

— The computer does not display a question mark when waiting for
input.

— Each LINE INPUT statement can assign a value to only one
variable.

— Commas and quotes can be used as part of the string input.
— Leading blanks are not ignored — they become part of variable.

The only way to terminate the string input is to press (ENTER).

Some situations require that you input commas, quotes, and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:
LINE INPUT A%
inputs A$ without displaying any prompt.
LINE INPUT "LAST NAME, FIRST NAMET "3 N%

displays a prompt message and inputs data. Commas do not
terminate the input string, as they would in an INPUT statement.

You may abort a LINE INPUT statement by pressing (BREAK). BASIC
returns to command level and displays Ready. Typing CONT resumes
execution at LINE INPUT.

2-115

LINE INPUT#

Statement
LINE INPUT# buffer, variable

Inputs an entire line of data from a sequential disk file to a string
variable.

Buffer is the number under which the file was OPENed.

This statement is useful when you want to read an ASCII-format
BASIC program file as data, or when you want to read in data without
following the usual restrictions regarding leading characters and
terminators.

LINE INPUT# reads everything from the first character up to:

— the end-of-file
— the 255th data character

Other characters encountered — quotes, commas, leading blanks —
are included in the string.

Example
If the data on disk looks like this:

19 CLEAR 300
29 OPEN "I"s 1, "PROG"

then the statement
LINE INPUT#1, A%
could be used repetitively to read each program line, one at a time.

2-116

LIST

Statement
LIST [startline]-[endline]

Lists a program in memory to the display.

Startline specifies the first line to be listed. If omitted, BASIC starts
with the first line in your program.

Endline specifies the last line to be listed. If omitted, BASIC ends with
the last line in your program.

You can substitute period (.) for either startline or endline to signify
current line number.

Examples
LIST

displays the entire program. To stop the automatic scrolling, press
SHIFD(@). This freezes the display. Press any key to continue the
listing.

LIST 50

displays line 50.
LIST 50-85

displays lines in the range 50-85.
LIST .-

displays the program line that has just been entered or edited, and all
higher-numbered lines.

LIST -227
displays all lines up to and including 227.

2-117

LLIST

Statement
LLIST [startline]-[endline]

Lists program lines in memory to the printer.

The only difference between LLIST and LIST is that LLIST lists the
lines on printer. See LIST.

Examples
LLIST

lists the entire program to the printer. To stop this process, press
SHIFD(@). This causes a temporary halt in the computer’s output to
the printer. Press any key to continue printing.

LLIST GB-90
prints lines in the range 68-90.

2-118

LOAD

Statement
LOAD “filespec” [,R]

Loads filespec, a BASIC program, into memory.

The R option tells BASIC to run the program. (LOAD with the R
option is equivalent to the command RUN filespec, R.)

LOAD without the R option wipes out any resident BASIC program,
clears all variables, and CLOSES all OPEN files. LOAD with the R
option leaves all OPEN files open and runs the program
automatically.

You can use either of these commands inside programs to allow
program chaining (one program calling another).

If you attempt to LOAD a non-BASIC file, a “Direct statement in file”
error will occur.

Example
LOAD "PROG1/BAG:Z2"

loads PROG1/BAS from Drive 2. BASIC then returns to the command
mode.

LOAD "PROG1/BAS"

loads PROG1/BAS. Since no drive is specified, BASIC begins
searching for it in Drive 0.

2-119

LOC

Function
LOC(buffer)

Returns the current record number.
Buffer is the buffer under which the file was OPENed.

LOC is used to determine the current record number, that is, the
number of the last record processed since the file was OPENed. It
returns the record number accessed by the last GET or PUT
statement.

LOC is also valid for sequential files. It returns the number of sectors
(256-byte block) read from or written to the file since the file was
OPENed.

Example
IF LDC(1):55 THEN END

if the current record number is greater than 55, ends program
execution.

Sample Program

1312 A% = "WILLIAM WILSON®

1320 GET 1

1330 IF N$ = A% THEN PRINT "FOUND IN RECORD"
LOC(1): CLOSE: END

1349 GOTO 1320

This is a portion of a program. Elsewhere the file has been OPENed
and FIELDed. N$ is a field variable. If N$ matches A$, the record
number in which it was found is printed.

2-120

LOF

Function
LOF(buffer)

Returns the end-of-file record number.
Buffer is the number under which a file was OPENed.

This function tells you the number of the last record in a direct-access
file.

Example

¥ = LOF(5)
assigns the last record number to variable Y.
Sample Programs

During direct access to a pre-existing file, you often need a way to
know when you've read the last valid record. LOF provides a way.

154% OPEN "R"s 1, "UNKNOWN/TXT"» 233
1559 FIELD 1,y 255 AS A%

1569 FOR I% = 1 TO LOFC1) LOF(1)Y = HIGHEST
157@ GET 1 I% ‘RECORD NUM. TO BE
1580 PRINT A% "ACCESSED

159@ NEXT I%

160¢ CLOSE

If you attempt to GET record numbers beyond the end-of-file, BASIC
gives you an error.

When you want to add to the end of a file, LOF tells you where to

start adding:
1600 1% = LOF(1) + 1 ‘HIGHEST EXISTING RECORD
161@ PUT 1, I% ‘ADD NEXT RECORD

2-121

LOG

Function
LOG(number)

Computes the natural logarithm of number.

This is the inverse of the EXP function. The result is always in single
precision.

Examples
PRINT LOG(3.14159)
prints the value 1.14473.
Z = 10 % LOG(Ps/P1)
performs the indicated calculation and assigns the value to Z.
Sample Program

This program demonstrates the use of LOG. It utilizes a formula taken
from space communications research.

340 INPUT "DISTANCE BIGNAL MUST TRAVEL
(MILES)"3 D

330 INPUT "SIGNAL FREQUENCY (GIGAHERTZ)"S5 F

SBEO L = 96.58 + (20 % LOG(F)) + (2@ % LOG(D))

370 PRINT "S5IGNAL STRENGTH LOSS IN FREE SPACE
Is" L "DECIBELS."

2-122

LPOS

Function
LPOS(number)

Returns the logical position of the line printer’'s print head within the
line printer’s buffer.

Number is a dummy argument.

This function does not necessarily give the physical position of the
print head.

Example
100 IF LPOS(X)»6® THEN LPRINT

LPRINT, LPRINT USING

Statement
LPRINT data, ...
LPRINT USING format; data, . . .

Prints data on the printer.
See PRINT and PRINT USING for more information.
Examples
LPRINT (A % 2)/3
prints the value of expression (A * 2)/3 on the printer.
LPRINT TAB(52) "TABBED 5@

moves the line printer carriage to TAB position 50 and prints
“TABBED 50”. (Refer to the TAB function).

LPRINT USING "susss,&"j 2,17
sends the formatted value bbbb2.2 to the line printer.

2-123

LSET

Statement
LSET field name = data

Sets data in a direct-access buffer field name.
Before using LSET, you must have used FIELD to set up buffer fields.

See also the chapter on “Disk Files”, OPEN, CLOSE, FIELD, GET,
PUT, and RSET.

Example

Suppose NM$ and AD$ have been defined as field names for a direct
access file buffer. NM$ has a length of 18 characters; AD$ has a
length of 25 characters. The statements

LSET NM%
LSET AD%

"JIM CRICKET: JR."
"2000 EAST PECAN BT."

Hou

set the data in the buffer as follows:
JIMBCRICKET s JR U B TOPDUEASTHPECANUST . HEKKGY

Notice that filler blanks were placed to the right of the data strings in
both cases. If we had used RSET statements instead of LSET, the
filler spaces would have been placed to the left. This is the only
difference between LSET and RSET.

If a string item is too large to fit in the specified buffer field, it is
always truncated on the right. That is, the extra characters on the
right are ignored. This applies to both LSET and RSET.

2-124

MEM

Function
MEM

Returns the amount of memory.

MEM performs the same function as FRE. It returns the number of
unused and unprotected bytes in memory.

This function may be used in the immediate mode to see how much
space a resident program occupies. It may also be used inside a
program to avert “Out of memory” errors. MEM requires no argument.

Example
PRINT MEM

Enter this command in the immediate mode (no line number is
needed). The number returned indicates the amount of leftover
memory; that is, memory not being used to store programs, variables,
strings, the stack, or not reserved for object files.

Sample Program

1619 IF MEM < B@® THEN 1630
1629 DIM A1)
1632 REM PROGRAM CONTINUES HERE

If fewer than 80 bytes of memory are left, control switches to another
part of the program. Otherwise, an array of 16 elements is created.

2-125

MERGE

Statement
MERGE “filespec”

Loads filespec, a BASIC program, and merges it with the program
currently in memory.

Filespec specifies a BASIC file in ASCII format (a program saved with
the A option). If filespec is a constant, it must be enclosed in quotes.

Program lines in the disk program are inserted into the resident
program in sequential order. For example, suppose that three of the
lines from the disk program are numbered 75, 85 and 90, and three of
the lines from the current program are numbered 70, 80, and 90.
When MERGE is used on the two programs, this portion of the new
program will be numbered 70, 75, 80, 85, 90.

If line numbers on the disk program coincide with line numbers in the
resident program, the disk program’s lines replace the resident
program’s lines.

MERGE closes all files and clears all variables. Upon completion,
BASIC returns to the command mode.

Example

Suppose you have a BASIC program on disk, PROG2/TXT (saved in
ASCII), which you want to merge with the program you've been
working on in memory. Then we use:

MERGE "PROGZ/TXT"
merges the two programs.
Sample Programs

MERGE provides a convenient means of putting program modules
together. For example, an often-used set of BASIC subroutines can
be tacked onto a variety of programs with this command.

Suppose the following program is in memory:

2-126

80 REM MAIN PROGRAM
99 REM LINE NUMBER RESERVED FOR SUBROUTINE HOOR

1909 REM PROGRAM LINE
1190 REM PROGRAM LINE
12@¢ REM PROGRAM LINE
13@ END

And suppose the following subroutine, SUB/TXT, is stored on disk in
ASCII format:

9¢ GOSUB 10@0 SUBROUTINE HOOK

1009 REM BEGINNING OF SUBROUTINE
191@ REM SUBROUTINE LINE
1020 REM SUBROUTINE LINE
1030 REM SUBROUTINE LINE

1040 RETURN
You can MERGE the subroutine with the main program with:
MERGE "SUB/TXT"

and the new program in memory is:

80 REM MAIN PROGRAM

g¢ GOsSUB 1900 SUBROUTINE HOOK

1090 REM PROGRAM LINE

1198 REM PROGRAM LINE

120 REM PROGRAM LINE

130 END

1000 REM BEGINNING OF SUBROUTINE
1910 REM SUBROUTINE LINE

192@ REM SUBROUTINE L INE

1930 REM SUBROUTINE LINE

1049 RETURN

2-127

MID$

Statement
MIDS(oldstring, position [,length]) = replacement string

Replaces a portion of an oldstring with replacement string.
Oldstring is the variable name of the string you want to change.

Position is a number specifying the position of the first character to be
changed.

Length is a number specifying the number of characters to be
replaced.

Replacement string is the string to replace a portion of oldstring.

The length of the resultant string is always the same as the original
string. If replacement string is shorter than length, the entire
replacement string is used.

Examples:

A% = "LINCOLN"

MID$ (A% 3, 4) = "12345": PRINT A%
returns LI1234N.

MID$ (A%, 5) = "@1": PRINT A%
returns LINCO1N.

MIDS (A%, 1, 3) = "s%%": PRINT A%

returns *#xCOLN.

2-128

MID$

Function
MID$(string, integer [,number))

Returns a substring of string, beginning at position integer.

If integer is greater than the number of characters in string, MID$
returns a null string.

Number is the number of characters in the substring. If omitted,
BASIC returns all right most characters, beginning with the character
at position integer.

Examples
If AS = “WEATHERFORD” then
PRINT MID$(A$, 3+ 2)
prints AT.
F$ = MID$(A%, 3)
puts ATHERFORD into F$.
Sample Program
209 INPUT "AREA CODE AND NUMBER

(NNN-NNN-NNNN)Y "S5 PH$
210 EX$% = MID$(PH%, 3, 3)
22¢ PRINT "NUMBER IS5 IN THE " EX$ " EXCHANGE."

The first three digits of a local phone number are sometimes called
the exchange of the number. This program looks at a complete phone
number (area code, exchange, last four digits) and picks out the
exchange of that number.

2-129

MKDS$, MKI$, MKS$

Function
MKI$(integer expression)
MKS$(single-precision expression)
MKDS$(double-precision expression)

Convert numeric values to string values.

Any numeric value that is placed in a direct file buffer with an LSET or
RSET statement must be converted to a string.

These three functions are the inverse of CVD, CVI, and CVS. The
byte values which make up the number are not changed; only one
byte, the internal data-type specifier, is changed, so that numeric data
can be placed in a string variable.

MKDS$ returns an eight-byte string; MKI$ returns a two-byte string;
and MKSS$ returns a four-byte string.

Example
LSET AUG$ = MKS$(0.123)
Sample Program

1358 OPEN "D"s 1+ "TEST/DAT"s 14

1360 FIELD 1. AG T1s:, 4 AG I2%, 8 AG I3%
1370 LSET I1% MKI$(3000)

1380 LSET IZ2% MKD$(3000.1)

1390 LSET I3% MRD$ (3000 .,00001)

1499 PUT 1 1

1419 CLOSE 1

e

For a program that retrieves the data from TEST/DAT, see
CVD/CVI/CVS.

2-130

NAME

NEW

Statement
NAME old filespec AS new filespec

Renames old filespec as new filespec.

With this statement, the data in the file is left unchanged. The new
filespec may not contain a password or drive specification.

Example

NAME "FILE" AS "FILE/OLD"
renames FILE as FILE/OLD.

NAME B% AS A%

renames B$ as A$.

Statement
NEW

Deletes the program currently in memory and clears all variables.

NEW displays a new (clear) screen and returns you to the command
mode.

Example
NEW

2-131

OCT$

Function
OCT$(number)

Computes the octal value of number.

OCTS$ returns a string which represents the octal value of number.
The value returned is like any other string — it cannot be used in a
numeric expression.

Examples

PRINT OCT$(3@), OCT$(5@), OCT$(90)
prints the following strings:

36 B2 132

Y& = 0CT$(X/84)

Y$ is a string representation of the integer quotient X/84 to base 8.

ON ERROR GOTO

Statement
ON ERROR GOTO line

Transfers control to line if an error occurs.

This lets your program “recover” from an error and continue
execution. (Normally, you have a patrticular type of error in mind when
you use the ON ERROR GOTO statement).

ON ERROR GOTO has no effect unless it is executed before the
error occurs. To disable it, execute an ON ERROR GOTO 0. If you
use ON ERROR GOTO 0 inside an error-trapping routine, BASIC
stops execution and prints an error message.

2-132

The error-handling routine must be terminated by a RESUME
statement. See RESUME.

Example
19 ON ERROR GOTO 1520

branches program control to line 1500 if an error occurs anywhere
after line 10.

For the use of ON ERROR GOTO in a program, see the sample
program for ERROR.

ON ... GOSUB

Statement
ON expression GOSUB line, .

Calls the subroutine at the line based on the value of expression.

Expression is a numeric expression between 0 and 255, inclusive. For
example, if expression’s value is three, the third line number in the list
is the destination of the branch.

If expression’s value is zero or greater than the number of items in
the list (but less than or equal to 255), BASIC continues with the next
executable statement. If expression is negative or greater than 255,
an “llilegal function call” error occurs.

Example
ON Y GOSUB 10900, 2000, 3000

If Y = 1, the subroutine beginning at 1000 is called. If Y = 2, the
subroutine at 2000 is called. If Y = 3, the subroutine at 3000 is
called.

Sample Program

439 INPUT "CHOOSE 1, 2+ OR 3" 4§ I
449 ON I GOSUB S0@, GO@, 700
439 END

500 PRINT "SUBROUTINE #1": RETURN
E@® PRINT "SUBROUTINE #2": RETURN
700 PRINT "SUBROUTINE #3": RETURN

2-133

ON...GOTO

Statement
ON expression GOTO line, ...

Goes to the line specified by the value of expression.
Expression is a numeric expression between 0 and 255.

This statement is very similar to ON .. . GOSUB. However, instead of

branching to a subroutine, it branches control to another program line.

The value of expression determines to which line the program will
branch. For example, if the value is four, the fourth line number in the
list is the destination of the branch. If there is no fourth line number,
control passes to the next statement in the program.

If the value of expression is negative or greater than 255, an “lllegal
function call” error occurs. Any amount of line numbers may be
included after GOTO.

Example
ON MI GOTO 150, 160 170 150, 180

tells BASIC to “Evaluate MI;

if the value of MI equals one then go to line 150;

if it equals two, then go to 160;

if it equals three, then go to 170;

if it equals four, then go to 150;

if it equals five, then go to 180;

if the value of Ml doesn’t equal any of the numbers one through five,
advance to the next statement in the program”.

2-134

OPEN

Statement
OPEN mode, buffer, “filespec” [,record length]

Opens a disk file.

Mode is a string expression whose first character is one of the
following:

O for sequential output mode

| for sequential input mode

E for sequential output and extend mode
D or R for direct input/output mode

Buffer is an integer between 1 and 15. It specifies which area in
memory you will use to access the file.

Filespec specifies a TRSDOS file.

Record length is an integer which sets the record length for
direct-access files. The default is 256 bytes.

Once you have assigned a buffer to a file with the OPEN statement,
that buffer cannot be used in another OPEN statement. You must first
CLOSE the first file.

Examples
OPEN "D"+ 2, "DATA/BAS.SPECIAL"

opens the file DATA/BAS in direct-access mode, with the password
SPECIAL. Buffer 2 is used. If DATA/BAS does not exist, it is created
on the first non write-protected drive. The record length is 256 bytes.

OFEN "D"y S5 “"TEXT/BAS", G4

opens the file TEXT/BAS for direct access. Buffer 5 is used. The
record length is 64. If this length does not match the record length
assigned to TEXT/BAS when the file was originally OPENed, an error
occurs.

DPEN "O"s 74 "INU/CONT™

opens the sequential file “INV/CONT"” for output. If “INV/CONT” does
not exist, it is created. Information is written to the file sequentially,
starting at the first byte. If the file does exist, any new information is
written over the existing information; the file’s previous contents are
lost.

2-135

OPTION BASE

DPEN "E"s+ 14+ "LIST/EMP"

opens the file LIST/EMP and extends it by appending new data to the
end of the file. If “LIST/EMP” does not exist, OPEN “E” works the
same way as OPEN “O”.

OPEN "I",y Bs "MGT"

opens the sequential file “MGT” for sequential input. This enables you
to retrieve information from the file (using INPUT# or LINE INPUT#).
If “MGT” does not exist, a “File not found” error occurs.

See the chapter on “Disk Files” for programming information.

Statement
OPTION BASE n

Sets n as the minimum value for an array subscript.
N may be 1 or 0. The default is 0.

If you use this statement in a program, it must precede the DIM
statement.

If the statement
OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

2-136

OUT

PEEK

Statement

OUT port, data byte

Sends a data byte to a machine output port.

Port is an integer between 0 and 255. Data byte is also an integer
between 0 to 255.

A port is an input/output location in memory. For information on
assigned ports, see the Model 4/4P Technical Reference Manual.

Example
QuUT 32,100
sends 100 to port 32.

Function
PEEK(memory location)

Returns a byte from memory location.
The memory location must be in the range — 32768 to 65535.

The value returned is an integer between 0 and 255. (For the
interpretation of a negative value of memory location, see the
statement VARPTR.)

PEEK is the complementary function of the statement POKE.
Example
A = PEEK (&HSAQ®)

2-137

POKE

Statement
POKE memory location, data byte

Writes data byte into memory location.

Both memory location and data byte must be integers. Memory
location must be in the range — 32768 to 65535.

POKE is the complementary statement of PEEK. The argument to
PEEK is a memory location from which a byte is to be read.

PEEK and POKE are useful for storing data efficiently, loéding
assembly-language subroutines, and passing arguments (or results) to
and from assembly-language subroutines.

For more information, see the Model 4/4P Technical Reference
Manual.

Example
1® POKE &HSAQ0, BHFF

POS

Function
POS(number)

Returns the position of the cursor.
Number is a dummy argument.

POS returns a number from 1 to 80 indicating the current
cursor-column position on the display.

Example
PRINT TAB(4@) PDS(®)

2-138

PRINT

prints 40. The PRINT TAB statement moves the cursor to position 40,
therefore, POS(0) returns the value 40. (However, since a blank is
inserted before the “4” to accommodate the sign, the “4” is actually
at position 41).

Sample Program

1530 CLS

16¢ A% = INKEY$

17¢ IF A% = "" THEN 1G@

180 IF POS(X) » 7@ THEN IF A% = CHR$(3Z2)

THEN A% = CHR$%(13)
190 PRINT A%s
200 PRINT A%s
21¢ GOTO 1G9

This program lets you use your printer as a typewriter (except that
you cannot correct mistakes). Your computer keyboard is the
typewriter keyboard. The program will keep watch at the end of a line
so that no word is divided between two lines.

Statement
PRINT data, . ..

Prints numeric or string data on the display.
BASIC prints the values of the data items you list in this statement.

You may separate the data items by commas or semicolons. If you
use commas, the cursor automatically advances to the next tab
position before printing the next item. (BASIC divides each line into
five tab positions, at columns 0, 16, 32, 48, and 64). If you use
semicolons, it prints the items without any spaces between them.

BASIC prints positive numbers with a leading blank. It prints all
numbers with a trailing blank. This is done even if the numbers are
separated by a semicolon.

A semicolon or comma at the end of a line causes the next PRINT
statement to begin printing where the last one left off. If no trailing
punctuation is used with PRINT, the cursor drops down to the
beginning of the next line.

2-139

Single-precision numbers with six or fewer digits that can be
accurately represented in ordinary (rather than exponential) format,
are printed in ordinary format. For example, 1E-7 is printed as
.0000001; 1E-8 is printed as 1E-08.

Double-precision numbers with 16 or fewer digits that can be
accurately represented in ordinary format, are printed using the
ordinary format. For example, 1D-15 is printed as .000000000000001 ;
1D-16 is printed as 1D-16.

To insert strings into this statement, surround them with quotation
marks.

Examples
PRINT "DO"5§ "NOT"§ "LEAVE"3 "SPACES";
"BETWEEN"3 “THESE"; "WORDS"

prints on the display:
DONOTLEAVESPACESBETWEENTHESEWORDS

Sample Program

6@ INPUT "ENTER THIS YEAR"S§ Y

70 INPUT "ENTER YOUR AGE"iA

B® INPUT "ENTER A YEAR IN THE FUTURE"3F

80 M = A + (F - ¥)

1900 PRINT "IN THE YEAR"F"YOU WILL BE"N"YEARS
oLD"

RUN

Since F and N are positive numbers, PRINT inserts a space before
and after them, therefore your display should look similar to this
(depending on your input):

IN THE YEAR 2094 YOU WILL BE 46 YEARS OLD
If we had separated each expression in line 100 by a comma,

100 PRINT "IN THE YEAR" sF »"YOU WILL
BE" sN»"YEARS OLD"

BASIC would move to the next tab position after printing each data
item.

2-140

PRINT USING

Statement
PRINT USING format; data item, ...

Prints data items using a format specified by you.

Format consists of one or more field specifiers enclosed in quotes, or
a string variable which contains the field specifier(s).

Data item may be string and/or numeric value(s).

This statement is especially useful for printing report headings,
accounting reports, checks, or any other documents which require a
specific format.

With PRINT USING, you may use certain characters (field specifiers)
to format the field. These field specifiers are described below. They
are followed by sample program lines and their output to the screen.

Specifiers for String Fields:
! Print the first character in the string only.

PRINT USING “I”; “PERSONNEL”
P

\ spaces\ Print 2+ n characters from the string. If you type the
backslashes without any spaces, BASIC prints two
characters; with one space, BASIC prints three
characters, and so on. If the string is longer than the
field, the extra characters are ignored. If the field is
longer than the string, the string is left-justified and
padded with spaces on the right. To enter a
backslash, press (CLEAR)(2).

PRINT USING “\bbb\”; “PERSONNEL”
(three spaces between the backslashes)
PERSO

& Print the string without modifications.

10 A$="TAKE”:B$="RACE”
20 PRINT USING “I";AS;

30 PRINT USING “&";B$
RUN

TRACE

2-141

Specifiers for Numeric Fields:

#

ek

Print the same number of digit positions as number
signs (#). If the number to be printed has fewer
digits than positions specified, the number is
right-justified (preceded by spaces). Numbers are
rounded as necessary. You may insert a decimal
point at any position. In that case, the digits
preceding the decimal point are always printed (as
zero, if necessary).

If the number to be printed is larger than the
specified numeric field, a percent sign (%) is printed
in front of the number. If rounding the number
exceeds the field, a percent sign is also printed in
front of the rounded number.

PRINT USING “##.##";,111.22
%111.22

If the number of digits specified exceeds 24, an
“lllegal function call” occurs.

PRINT USING “##.##",.75
0.75

PRINT USING “###.##,876.567
876.57

Print the sign of the number. The plus sign may be
typed at the beginning or at the end of the format
string.

PRINT USING “+ ##.## ”;
—98.45,3.50,22.22, - .9
-9845 +350 +2222 -0.90

PRINT USING “##.##+
—98.45,3.50,22.22, - .9
98.54—- 350+ 2222+ 0.90-

(Note the use of spaces at the end of a format string
to separate printed values).

Print a negative sign after negative numbers (and a
space after positive numbers).

PRINT USING “###.# —"; —768.660
768.7 —

Fill leading spaces with asterisks. The two asterisks
also establish two more positions in the field.

PRINT USING “sx####"; 44.0
stk 44

2-142

$$ Print a dollar sign immediately before the number.
This specifies two more digit positions, one of which
is the dollar sign.

PRINT USING “$$##.##"”;, 112.7890
$112.79

#x§ Fill leading spaces with asterisks and print a dollar
sign immediately before the number.

PRINT USING “#=$##.##"; 8.333
#i4$8.33

Print a comma before every third digit to the left of
the decimal point. The comma establishes another
digit position.

PRINT USING “####, ##", 1234.5
1,234.50

Print in exponential format. The four exponent signs
are placed after the digit position characters. To type
the ~, press (CLEAR)(;). You may specify any
decimal point position.

PRINT USING “.####~ "~ """, 888888
.8889E + 06

— Print next character as a literal character.

PRINT USING “_I##.##.__1",12.34
112.34!

Sample Program

AAANAA

420 CLS: A% = “"wxsuu,sswsss,wx DOLLARE"

439 INPUT “"WHAT IS5 YOUR FIRST NAME"3 F#%

449 INPUT "WHAT IS5 YOUR MIDDLE NAME"3: M$
45@ INPUT "WHAT IS5 YOUR LAST NAME"§ L%

460 INPUT "ENTER AMOUNT PAYABLE"F P#

47@ CLS @ PRINT "PAY TO THE ORDER OF "i

489 PRINT USING "!!D L "5 F&i "."§5 M&: ","3
489 PRINT L%

SO0 PRINT :PRINT USING A%5 P#

In line 480, each ! picks up the first character of one of the following
strings (F$, “.”, M$, and “.” again). Notice the two spaces in “!!b!lt".
These two spaces insert the appropriate spaces after the initials of the
name (see below). Also notice the use of the variables A$ for format
and P for item list in line 500. Any serious use of the PRINT USING
statement would probably require the use of variables at least for item
list rather than constants. (We've used constants in our examples for
the sake of better illustration.)

2-143

PRINT @

When the program above is run, the output should look something
like this:

WHAT IS5 YOUR FIRST NAMEY JOHN
WHAT IS5 YOUR MIDDLE NAME? PAUL
WHAT IS5 YOUR LLAST NAMET JONES
ENTER AMOUNT PAYABLE® 12345.6
PAY TO THE ORDER OF J, P. JONES

¥¥¥¥¥$12,435.60 DOLLARS

Statement
PRINT@ location,
PRINT@ (row, column),

Specifies exactly where printing is to begin.

The location specified must be a number between 0 and 1919. It can
also be a pair of numbers (r, ¢), where row is a number in the range
0 to 23 and column is a number in the range 0 to 79.

Whenever you instruct BASIC to PRINT @ the bottom line of the
display, it generates an automatic line feed; everything on the display
moves up one line. To suppress this automatic line feed, use a trailing
semicolon at the end of the statement.

NOTE: If the string you are printing extends past column 80 or the
current screen width, BASIC prints the entire string on the next line.
See WIDTH for more information.

Examples
PRINT @ (11,39), "%"

prints an asterisk in the middle of the display. The space between
PRINT and @ is optional.)

PRINT @ @, "#"
prints an asterisk at the top left corner of the display.

2144

PRINT TAB

Statement
PRINT TAB(n)

Moves the cursor to the n position on the current line.
TAB may be used more than once in a print list.

Since numeric expressions may be used to specify a TAB position,
TAB can be very useful in creating tables, graphs of mathematical
functions, etc.

TAB can’t be used to move the cursor to the left. If the cursor is to
the right of the specified position, the TAB statement is simply
ignored.

The first parenthesis must be typed immediately after the word TAB.

If n is greater than 80 or the current width of the screen, BASIC
divides n by 80 or the current width and uses the remainder of the
division as the tab position. For example, if you enter the line:

PRINT “"NAME"S TAB(B4)3i "AMOUNT®

If screen width is 80, BASIC converts TAB(84) into TAB(4). Since the
cursor is already at column five after printing NAME, BASIC moves
the string AMOUNT to the next line. If, instead, you had typed
TAB(85), BASIC would print AMOUNT on the same line. If the screen
width is 60, BASIC converts TAB(84) into TAB(24).

If the string you are printing is too long to fit on the current line,
BASIC moves the string to the next line.

Example

PRINT TAB(5) "TABBED 5"3j TAB(25) "TABBED 25"
Notice that no punctuation is needed after the TAB modifiers.
Sample Program

229 CLS

230 PRINT TAB(Z) "CATALOG NO."3i TAB(16)
"DESCRIPTION OF ITEM"3

249 PRINT TAB(38) "QUANTITY"S TAB(S51) "PRICE
PER ITEM" 3

245 PRINT TAB(BY) "TOTAL PRICE"

2-145

PRINT#

Statement
PRINT# buffer, item1, item2, . ..

Prints data items in a sequential disk file.
Buffer is the buffer number used to OPEN the file for input.

When you first OPEN a file for sequential output, BASIC sets a
pointer to the beginning of the file — that's where PRINT# starts
printing the values of the items. At the end of each PRINT#
operation, the pointer advances, so values are written in sequence.

A PRINT# statement creates a disk image similar to what a PRINT to
the display creates on the screen. For this reason, make sure to
delimit the data so that it will be input correctly from the disk.

PRINT# does not compress the data before writing it to disk. It writes
an ASCIl-coded image of the data.

Examples

If A = 123.45
PRINT# 1A

writes this nine-byte character sequence onto disk:
P123,45% carriadge return

The punctuation in the PRINT list is very important. Unquoted
commas and semicolons have the same effect as they do in regular
PRINT statements to the display. For example, if A = 2300 and B =
1.303, then

PRINT# 1+ A4B
ENTER

writes the data on disk as
W 2300 WbbbbPpbEE 1.303F carriade return

The comma between A and B in the PRINT# list causes 10 extra
spaces in the disk file. Generally you wouldn’t want to use up disk
space this way, so you should use semicolons instead of commas.

2-146

PUT

Files can be written in a carefully controlled format using PRINT#
USING. You can also use this option to control how many characters
of a value are written to disk.

For example, suppose A$ = “LUDWIG”, B$ = “VON”, and C$ =
“BEETHOVEN”. Then the statement

PRINT# 1, USING"!,! , \BKB\"3A%R$CSE
would write the data in nickname form:
L+V,BEET

(In this case, we didn't want to add any explicit delimiters.) See
PRINT USING for more information on the USING option.

Statement
PUT buffer [,record]

Puts a record in a direct-access disk file.
Buffer is the same buffer used to OPEN the file.

Record is the record number you want to PUT into the file. It is an
integer between 1 and 65535. If omitted, the current record number is
used.

This statement moves data from the buffer of a file into a specified
place in the file.

If record is higher than the end-of-file record number, then record
becomes the new end-of-file record number.

The first time you use PUT after OPENing a file, you must specify the
record. The first time you access a file via a particular buffer, the next
record is set equal to one. (The next record is the record whose
number is one greater than the last record accessed).

See the chapter on “Disk Files” for programming information.
PUT 1
writes the next record from buffer 1 to a direct-access file.
CPUT 1 25
writes record 25 from buffer 1 to a direct-access file.

2-147

RANDOM

Function

RANDOM

Reseeds the random number generator.

If your program uses the RND function, every time you load it, BASIC
generates the same sequence of pseudorandom numbers. Therefore,
you may want to put RANDOM at the beginning of the program. This
will help ensure that you get a different sequence of pseudorandom
numbers each time you run the program.

RANDOM needs to execute just once.

Sample Program

600
6i@
6B2@
6530
649

643
B5@

CLS : RANDOM
INPUT "PICK A NUMBER BETWEEN 1 AND 3"3 A
B = RND(3)

IF A = B THEN B30

PRINT "¥OU LOSE: THE ANSWER IS" B "--TRY
AGAIN,"

GOTO G1e@

PRINT "YOU PICKED THE RIGHT NUMBER -- YOU
WIN!": GOTOD G1¢

2-148

READ

Statement
READ variable, .

Reads values from a DATA statement and assigns them to variables.

BASIC assigns values from the DATA statement on a one-to-one
basis. The first time READ is executed, the first value in the first
DATA statement is used; the second time, the second value is used,
and so on.

A single READ may access one or more DATA statements (each
DATA statement is accessed in order), or several READs may access
the same DATA statement.

The values read must agree with the variable types specified in list of
variables, otherwise, a “Syntax error” occurs. If the number of
variables in the READ statement exceeds the number of elements in
the DATA statement(s), an “Out of data” error message is printed.

If the number of variables specified is lower than the number of
elements in the DATA statement(s), subsequent READ statements
begin reading data at the first unread element.

Example
READ T

reads a numeric value from a DATA statement and assigns it to
variable “T”.

Sample Program

This program illustrates a common application for the READ and
DATA statements.

49 PRINT "NAME" s "AGE"

5S¢ READ Ns

B@ IF N%="END" THEN PRINT "END OF LIST": END
70 READ AGE

80 IF AGE< 18 THEN PRINT N$: AGE

8¢ GOTO 30

100 DATA "SMITH: JOHN": 30+ "ANDERS: T.M."s 20
119 DATA "JONESs BILL", 15+ "DDE., SALLY", 21
120 DATA "COLLINSs W.P."s 17, "END"

2-149

REM

REM

Statement

Inserts a remark line in a program.

REM instructs the computer to ignore the rest of the program line.
This allows you to insert remarks into your program for
documentation. Then, when you look at a listing of your program, or
someone else does, it will be easier to figure it out.

If REM is used in a multi-statement program line, it must be the last
statement in the line.

You may use an apostrophe (') as an abbreviation for REM.

Sample Program

11@
120
130
149

OR
1i@
120

13@
149

DIM V(2@)

REM CALCULATE AVERAGE VELOCITY
FOR I=1 TO 20

gUM=8UM + WU(I}

DIM V(22)

FOR I=1 TO 20 ‘'CALCULATE AVERAGE VELOCITY
SUM=8UM + U{I)

NEXT I

2-150

RENUM

Statement
RENUM [new line] [,[line] [,increment]]

Renumbers a program, starting at line, using new line as the first new
line and increment for the new sequence.

If you omit new line, BASIC starts numbering at line 10. If you omit
line, it renumbers the entire program. If you omit increment, it jumps
10 numbers between lines.

RENUM also changes all line number references appearing after
GOTO, GOSUB, THEN, ELSE, ON ... GOTO, ON...GOSUB, ON
ERROR GOTO, RESUME, and ERL][relational operator].

If the program contains line number references that do not exist,
RENUM does not change those line number references. We
recommend that you save a copy of the program before you
renumber it. If there are any non-existent line number references after
you renumber the program they will be easier to correct.

Examples

RENUM

renumbers the entire resident program, incrementing by 10’s. The
new number of the first line will be 10.

RENUM GO®, 5000, 100

renumbers all lines numbered from 5000 up. The first renumbered line
will become 600, and an increment of 100 will be used between
subsequent lines.

RENUM 10000, 1000

renumbers line 1000 and all higher-numbered lines. The first
renumbered line will become line 10000. An increment of 10 will be
used between subsequent line numbers.

RENUM 10@, + 100

renumbers the entire program, starting with a new line number of 100,
and incrementing by 100’s. Notice that the commas must be retained
even though the middle argument is gone.

2-151

RESTORE

Error Conditions

1. RENUM cannot be used to change the order of program lines. For
example, if the original program has lines numbered 10, 20 and
30, then the command:

RENUM 15, 30

is illegal, since the result would be to move the third line of the
program ahead of the second. In this case, an “lllegal function
call” error occurs, and the original program is left unchanged.

2. RENUM will not create new line numbers greater than 65529.
Instead, an “lllegal function call” error occurs, and the original
program is left unchanged.

3. If an undefined line number is used inside your original program,
RENUM prints a warning message, Undefined line XXXX in
YYYY”, where XXXX is the original line number reference and
YYYY is the original number of the line containing XXXX. Note that
RENUM renumbers the program in spite of this warning message.
It does not change the incorrect line number reference, but it does
renumber YYYY, according to the parameters in your RENUM
command.

Statement

RESTORE [line]

Restores a program’s access to previously-read DATA statements.

This lets your program re-use the same DATA lines. If line is specified,
the next READ statement accesses the first item in the specified
DATA statement.

Sample Program

160 READ X%

170 RESTORE

180 READ Y4%

190 PRINT X$s Y%

20@ DATA THIS I8 THE FIRST ITEM: AND THIS IS
THE SECOND

2-152

RESUME

When this program is run,
THIS IS THE FIRST ITEM THIS IS THE FIRST ITEM

is printed on the display. Because of the RESTORE statement in line
170, the second READ statement starts over with the first DATA item.

Statement
RESUME [line]
RESUME NEXT

Resumes program execution after an error-handling routine.

RESUME without an argument and RESUME 0 both cause the
computer to return to the statement in which the error occurred.

RESUME line causes the computer to branch to the specified line
number.

RESUME NEXT causes the computer to branch to the statement
following the point at which the error occurred.

A RESUME that is not in an error-handling routine causes a
“RESUME without error” message.

Examples
RESUME

if an error has occurred, this line transfers program control to the
statement in which it occurred.

RESUME 10
if an error has occurred, transfers control to line 10.
Sample Program

19 ON ERROR GOTD 900

+

+

900 IF (ERR=230) AND(ERL=89¢) THEN PRINT "“TRY
AGAIN" : RESUME 8¢

2-153

RETURN

Statement
RETURN

Returns control to the line immediately following the most recently
executed GOSUB.

If the program encounters a RETURN statement without execution of
a matching GOSUB, an error occurs.

Sample Program

339 PRINT "THIS5 PROGRAM FINDS THE AREA OF A
CIRCLE"

349 INPUT "TYPE IN A VALUE FOR THE RADIUS"3F R

350 GOSUB 370

369 PRINT "AREA IS" 3 Az END

370 A = 3,14 ¥ R * R

380 RETURN

RIGHT$

Function
RIGHTS(string, number)

Returns the rightmost number characters of string.

RIGHTS$ returns the last number characters of string. If LEN (string) is
less than or equal to number, the entire string is returned.

Examples:

PRINT RIGHT$("WATERMELON", 5)
prints MELON.

PRINT RIGHT$("MILKY WAY": 25)
prints MILKY WAY.

2-154

Sample Program

859 RESTORE : DN ERROR GOTO B88@
860 READ COMPANY$
870 PRINT RIGHT$(COMPANY$, Z)s : GOTO BGO
880 END
890 DATA "BECHMAN LUMBER COMPANY: SEATTLE: WA"
909 DATA "ED NORTON SEWER SERVICE: BROOKLYN. NY"
919 DATA "HAMMON MANUFACTURING COMPANY s
HAMMOND » IN"

This program prints the name of the state in which each company is
located.

Function
RND(number)

Generates a pseudorandom number between 0 and number.
Number must be greater than or equal to 0 and less than 32768.

RND produces a pseudorandom number using the current “seed”
number. BASIC generates the seed internally, therefore, it is not
accessible to the user. RND may be used to produce random
numbers between 0 and 1, or random integers greater than 0,
depending on the argument.

RND(0) returns a single-precision value between 0 and 1,
RND(number) returns an integer between 1 and number. For
example, RND(55) returns a pseudorandom integer between 1 and
55. RND(55.5) returns a pseudorandom number between 1 and 56
(the argument is rounded).

Examples
A = RND(2)

assigns A a value of 1 or 2.
A = RND(45)

assigns A a random integer between 1 and 45.
PRINT RND (@)

prints a decimal fraction between 0 and 1.

2-155

ROW

Function
ROW(number)

Returns the row position of the cursor.
Number is a dummy argument.

ROW finds the row in which the cursor is currently located and
returns that row number. The 24 rows are numbered 0-23.

Examples

¥o= ROWC(Y)
assigns the cursor’s current row number to X.
Sample Program

When you type a key, the program below prints: the keyboard
character, the cursor's row number and column number, and the
character’'s ASCII code.

iee CLS

11@ R=0@: C=¢

120 PRINTE(Z1,:32) "ROW", "COLUMN"

132 X& = INPUT$(1)

149 PRINT B(RsC)» X%3

130 C=POS(2): R=ROW(®)

160 PRINT B (22,32)sR:C53

163 PRINT B8 (23:32), STRING$(Z20,32) 3

165 PRINT B(23,32), "ABLCII CODE I8
"HEX$ (ASC(X$)) 3

170 PRINT @ (RsC)s""3

189 GOTO 130

2-156

RSET

RUN

Statement
RSET field name = data

Sets data in a direct-access buffer field name.

This statement is similar to LSET. The difference is that with RSET,
data is right-justified in the buffer.

See LSET for details.

Statement
RUN [line]
RUN filespec[,R]

Runs a program.

RUN followed by a line or nothing at all simply executes the program
in memory, starting at /ine or at the beginning of the program.

RUN followed by a filespec loads a program from disk and then runs
it. Any resident BASIC program is replaced by the new program.

Option R leaves all previously OPEN files open. If omitted, BASIC
closes all open files.

RUN automatically CLEARS all variables. However, it does not re-set
the value of an ERL variable.

2-157

SAVE

Examples
RUN
starts execution at lowest line number.
RUN 100
starts execution at line 100.
RUN "PROGRAM/A"
loads and executes PROGRAM/A.
RUN "EDITDATA": R
loads and executes EDITDATA, leaving OPEN files open.

Statement
SAVE “filespec” [,A] [,P]

Saves a program in a disk file under filespec.

If filespec already exists, its contents will be lost as the file is
re-created.

SAVE without the A option saves the program in a compressed
format. This takes up less disk space. It also helps in performing
SAVEs and LOADs faster. BASIC programs are stored in RAM using
compressed format.

Using the A option causes the program to be saved in ASCII format.
This takes up more disk space. However, the ASCII format allows you
to MERGE this program later on. Also, data programs which will be
read by other programs must usually be in ASCII.

For compressed-format programs, a useful convention is to use the
extension BAS. For ASCII-format programs, use /TXT.

The P option protects the file by saving it in an encoded binary
format. When a protected file is later RUN (or LOADed), any attempt
to list or edit it fails. The only operations that can be performed on a
protected file are: RUN, LOAD, MERGE, and CHAIN.

2-158

SGN

Examples
SAVE “"FILE1/BAS.,JOHNODOE:3"

saves the resident BASIC program in compressed format. The file
name is FILE1; the extension is /BAS; the password is JOHNQDOE.
The file is placed on Drive 3.

SAVE "MATHPAK/THT" s+ A
saves the resident program in ASCII form, using the name

MATHPAK/TXT, on the first non-write-protected drive.

Function
SGN(number)

Determines number’s sign.

If number is a negative number, SGN returns — 1. If number is a
positive number, SGN returns 1. If number is zero, SGN returns 0.

Examples
= SGN(A * B)

A
1

determines what the sign of the expression A * B is, and passes the
appropriate number (—1,0,1) to Y.

Sample Program

B1i@ INPUT "ENTER A NUMBER"3§F X

B20 ON SGN(X) + 2 GOTO B32: BG40, G3IQ
B30 PRINT "NEGATIVE": END

4@ PRINT "ZERO": END

650 PRINT “POSITIVE": END

2-159

SIN

SOUND

Function
SIN(number)

Computes the sine of number.

Number must be in radians. To obtain the sine of number when
number is in degrees, use SIN(number * .01745329). The result is
always single precision.

Examples

PRINT SIN(7.98)
prints .994385.
Sample Program

BB INPUT "ANGLE IN DEGREES"3 A
B7@ PRINT "SINE IS"35 SGIN (A * ,01743329)

Statement
SOUND tone, duration

Generates a sound with the tone and duration specified.

Tone is a digit between 0 and 7. It specifies the sound’s frequency
level. Zero specifies the lowest frequency level; seven specifies the
highest.

Duration is an integer between 0 and 31. It specifies for how long the
sound is to be generated. Zero specifies the shortest duration; 31 the
longest.

This statement can be especially useful in educational applications.
For example, you can have the computer respond with a sound if a

2-160

user has answered a program’s prompt incorrectly (or vice versa).

Sample Program

1 INPUT "IN HONOR OF WHOM WAS THE CONTINENT OF
AMERICA NAMED"3 A%
20 IF A$="AMERIGO VESPUCCI" THEN SOUND 7,2 ELSE
GOTO 40
30 PRINT "THAT’S RIGHT!": END
42 SDUND 1.2 PRINT "THE CORRECT ANSWER IS
AMERIGOD VESPUCCI"
Function
SPACES$(number)
Returns a string of number spaces.
Number must be in the range 0 to 255.
Example
PRINT "DESCRIPTION" SPACE$(4) "TYPE" SPACE%$(9)
"QUANTITY"

prints DESCRIPTION, four spaces, TYPE, nine spaces, QUANTITY.
Sample Program

920 PRINT "Here"

93¢ PRINT SPACE$(13) "is"

949 PRINT SPACE$(Z6) "an"

950 PRINT SPACE$(39) "example"
96@ PRINT SPACE$(3Z) "of"

973 PRINT SPACE$(G3) "SPACES$"

2-161

SPC

SQR

Function
SPC(number)

Prints a line of number blanks.

Number is in the range 0 to 255. SPC does not use string space. The
left parenthesis must immediately follow SPC.

SPC may only be used with PRINT, LPRINT, or PRINT#.
Example

PRINT "HELLD" SPC(15) "THERE"
prints HELLO, 15 spaces, THERE

Function
SQR(number)

Calculates the square root of number.
The number must be greater than zero.
The result is always single precision.
Example

PRINT SOR(155.7)
prints 12.478.

2-162

Sample Program

5B2 INPUT "TOTAL RESISTANCE (OHMS)"3 R
BB@ INPUT "TOTAL REACTANCE (OHMS)"35 ¥
700 Z = BORC(R # R)Y + (X % ¥))

71@ PRINT "TOTAL IMPEDANCE (0OHMS) IS" Z
This program computes the total impedance for series circuits.

STOP

Statement
STOP

Stops program execution.

When a program encounters a STOP statement, it prints the message
BREAK IN, followed by the line number that contains the STOP.
STOP is primarily a debugging tool. During the break in execution,
you can examine variables or change their values.

The CONT command resumes execution at the point it was halted.
But if the program itself is altered during the break, CONT cannot be
used.

Sample Program

2268 X = RNDO1@®)
2279 STOP
2280 GOTO 2260

A random number between 1 and 10 is assigned to X, then program
execution halts at line 2270. You can now examine the value X with
PRINT X. Type CONT to start the cycle again.

2-163

STRS$

STRING$S

Function
STRS$(number)

Converts number into a string.
If number is positive, STR$ places a blank before the string.

While arithmetic operations may be performed on number, only string
functions and operations may be performed on the string.

Example

5% = STR$(X
converts the number X into a string and stores it in S$.
Sample Program

19 A = 1,6 : B# = A : Cx = UAL(BTR&(A))

2@ PRINT "REGULAR CONVERSION" TAB(4@) "SPECIAL
CONVERSION"

30 PRINT B# TAB(4@) C#

Function
STRINGS$(number,character)

Returns a string of number characters.
Number must be in the range 0 to 255.

Character is a string or an ASCII code. If you use a string constant, it
must be enclosed in quotes. All the characters in the string will have
either the ASCII code specified, or the first letter of the string
specified.

STRINGS$ is useful for creating graphs or tables.

2-164

Examples:
B$ = STRINGS(Z5, "X")
puts a string of 25 “X’s into B$.
PRINT STRING$(52, 1)

prints 50 blank lines on the display, since 10 is the ASCII code for a
line feed.

Sample Program

1040 CLEAR 300

183@ INPUT "TYPE IN THREE NUMBERS BETWEEN 33
AND 138"5 N1, NZ, N3

1069 CLS: FOR I = 1 TO 4: PRINT STRING$(Z2¢,
NiY: NEXT I

107@ FOR J = 1 TO Z: PRINT STRING$(40s NZ):
NEXT J

1080 PRINT STRING$(80, N3)

This program prints three strings. Each string has the character
corresponding to one of the ASCII codes provided.

SWAP

Statement
SWAP variable1, variable2

Exchanges the values of two variables.

Variables of any type may be SWAPped (integer, single precision,
double precision, string). However, both must be of the same type,
otherwise, a “Type mismatch” error results.

Either or both of the variables may be elements of arrays. If one or
both of the variables are non-array variables which have not been
assigned values, an “lllegal Function Call” error results.

Example
SWAP Fil#, F2u

swaps the contents of F1# and F2#. The contents of F2# are put
into F1#, and the contents of F1# are put into F2#.

2-165

SYSTEM

Sample Program

19 A%="0NE ":B$="ALL ":C%="FOR "
20 PRINT A% C% B%

3@ SWAP A%, B

49 PRINT A% C% DB%

RUN

ONE FOR ALL

ALL FOR ONE

Statement
SYSTEM [“command”]

Returns you to TRSDOS level.

Command tells the system to execute the specified TRSDOS
command and immediately return to BASIC. Your program and
variables are not affected. If command is a constant, it must be
enclosed in quotes. You can specify only the TRSDOS library
commands, not the utilities.

If you omit command, SYSTEM returns to the TRSDOS Ready mode.
Your resident BASIC program is not retained in memory.

NOTE: You cannot call DEBUG from BASIC.

Examples
SYSTEM

returns you to TRSDOS. Your resident BASIC program is lost.
5YSTEM "DIR"

runs the TRSDOS command, DIR (print directory), then returns to
BASIC. Your resident BASIC program remains intact.

2-166

TAB

TAN

Function
TAB(number)

Spaces to position number on the display.
Number must be in the range 1 to 255.

If the current print position is already beyond space number, TAB
goes to that position on the next line. Space one is the leftmost
position; the width minus one is the rightmost position.

TAB may only be used with the PRINT and LPRINT statements.

Sample Program

1@ PRINT "NAME" TAB(Z3) "AMOUNT":PRINT
20 READ A%+ B%

32 PRINT A% TAB(25) B%

4@ DATA "G.T.JDNES" »"%25.00"

RUN

The display shows:

NAME AMOUNT
G.T.JONES $25,00
Function
TAN(number)

Computes the tangent of number.

Number must be in radians. To obtain the tangent of number when it
is in degrees, use TAN (number * .01745329). The result is always
single precision.

2-167

Examples
PRINT TAN(7.,96)
prints —9.39702.

Sample Program

720 INPUT "ANGLE IN DEGREES"3 ANGLE
730 T = TAN(ANGLE * ,@17435329)
74¢ PRINT "TAN IB" T

TIMES

Function
TIMES

Returns the time of the day.
This function lets you use the time in a program.

The operator sets the time initially when TRSDOS is started up. When
you request the time, TIME$ supplies it using this format:

14:47:18
which means 14 hours, 47 minutes and 18 seconds (24-hour clock).
To change the time, use the TRSDOS command, TIME. For example,
SYSTEM "TIME 10:15:00"
Example
A% = TIMES
stores the current time in A$.
Sample Program
1139 SYSTEM "TIME 10:15:00"

1140 IF LEFT$(TIME®%, 5) = "10:15" THEN PRINT
"Time is 19:15 AMi--time to PicK urp the
mail." ¢ END

1159 GOTO 114¢@

2-168

TROFF, TRON

Statements
TROFF
TRON

Turn the “trace function” on/off.

The trace function lets you follow program flow. This is helpful for
debugging and analyzing of the execution of a program.

Each time the program advances to a new line, TRON displays that
line number inside a pair of brackets. TROFF turns the tracer off.

Sample Program

2299 TRON
2302 X = X % 3.14159
231¢ TROFF

Lines 2290 and 2310 above might be helpful in assuring you that line
2300 is actually being executed, since each time it is executed [2300]
is printed on the display.

After a program is debugged, the TRON and TROFF statements can
be removed.

2-169

USR

Function
USR[digit](expression)

Calls a user's assembly-language subroutine identified with digit and
passes expression to that subroutine.

The digit you specify must correspond to the digit supplied with the
DEF USR statement for that routine. If digit is omitted, zero is
assumed.

This function lets you call as many as 10 machine-language
subroutines, then continue execution of your BASIC program.
Subroutines must have been previously defined with DEF USR[digit]
statements.

When BASIC encounters a USR call, it transfers control to the
address defined in the DEF USR[digit] statement. (This address
specifies the entry point to your machine-language subroutine.)

“Machine language” is the low-level language used internally by your
computer. It consists of Z-80 microprocessor instructions.
Machine-language subroutines are useful for special applications
(things you can't do in BASIC) and for doing things very fast (like to
“white-out” the display).

Writing such routines requires familiarity with assembly-language
programming and with the Z-80 instruction set. There are books
available on this subject; check your local Radio Shack or a book
store.

Example

¥o= USRS(Y)
calls the machine-language routine USR5, previously defined in a
DEF USR5 = address statement.

Passing arguments from BASIC to the subroutine:

Upon entry to a USR subroutine, the following register contents are
set up (for notation, see the TRSDOS reference section in this
manual):

A = Type of argument in USR[digit] reference
A = 8 if argument is double-precision
A = 4 if argument is single-precision

2-170

A = 2if argument is integer
A = 3 if argument is string
HL = When the argument is a number, this register

points to the argument storage area(ASA)
described later.

DE = When the argument is a string, this register points
to a string description, as follows: The first byte
gives the length of the string. The next two bytes
give the address where the string is stored: least
significant byte (LSB) followed by most significant
byte(MSB).

Description of Argument Storage Area (ASA) — for numeric values
only.

For double-precision numbers:

ASA + 3 Exponent in 128-excess form, e.g., a value of 128
indicates a 0 exponent; a value of 66 indicates a
—62 exponent. A value of 0 always indicates the
number is zero.

ASA + 2 Highest seven bits of the mantissa with hidden
(implied) leading one. Bit 7 is the sign of the
number (@ positive, 1 negative), e.g., a value of
X'84’ indicates the number is negative and the
MSB of the mantissa is X'84". A value of X'04’
indicates the number is positive and the MSB of
the mantissa is X84,

ASA + 1 Next MSB of the mantissa.

ASA Next MSB.

ASA - 1 Next MSB.

ASA -2 Next MSB.

ASR -3 Next MSB.

ASA - 4 Lowest eight bits of the mantissa.
For single-precision numbers:

ASA LSB of the mantissa.

ASA + 1

through

ASA + 3 Same as for double-precision numbers.

For integers:

ASA LSB of the number

ASA + 1 MSB of the number. Together, the two bytes
represent the number in signed, two’s complement
form.

2-171

Your routine can call BASIC’s FRCINT routine to put the argument
into HL in 16-bit, signed two’s complement form. The address of
FRCINT is stored in [X'2603’, X'2604’].

For example, you can put the following code at the beginning of your
subroutine:

FRCINT EQU 2B603H sCONVERTS USR ARGUMENT

sTO INTEGER IN HL

LD HL sCTNU s (HL)Y=CONTINUATION
iADDRESS

PUSH HL sSAVE IT FOR RETURN
iFROM FRCINT

LD HL(FRCINT) 3(HL)=FORCE INTEGER
iROUTINE

JP (HL) D0 FRCINT ROUTINE

Returning values from the subroutine to BASIC:

If the USR[digit] expression is a variable, you can modify its value by
changing the ASA or string contents, as pointed to by HL or DE. For
example, the statement:

A=UBR1(A%)

transfers control to the USR1 subroutine, with HL pointing to the
two-byte ASA for integer variable A%. Suppose you modify the
contents of its storage area. When you do a RET instruction to return
to BASIC, A% will have a new value, and X will be assigned this new
value.

In general, USR[digit](expression) will return the same type of value
as the expression. However, you can use BASIC’s MAKINT routine to
return an integer value. The address of the MAKINT routine is stored
at [X'2605’,X'2606’].

For example, you might include the following code at the end of your
program to return a value to BASIC:

MAKINT EQU 2BB5H

LD HL sUAL sWAL IS5 THE WALUE TO
sBE RETURNED.
PUSH HL sSAVE VALUE IN STACK
LD HL s (MAKINT) sRESTORE VAL INTO HL
it (5P) s HL sAND PUT MAKINT
sINTD STACK
RET

2-172

VAL

Function
VAL(string)

Calculates the numerical value of string.

VAL is the inverse of the STR$ function; it returns the number
represented by the characters in a string argument. This number may
be integer, single precision, or double precision, depending on the
range of values and the rules used for typing all constants.

For example, if A$ = “12” and B$ = “34” then VAL(A$ + “.” + B$)
returns the value 12.34 and VAL(A$ + “E” + B$) returns the value
12E34, that is, 12 * 10" 34.

VAL terminates its evaluation on the first character which has no
meaning in a numeric value.

If the string is non-numeric or null, VAL returns a zero.
Examples
PRINT VAL("100 DOLLARS")
prints 100.
PRINT VAL ("1234ES5")
prints 1.234E + 08.
B = VAL("3" + "x" + "Zv)

assigns the value 3 to B (the asterisk has no meaning in a numeric
term).

Sample Program

10 READ NAMES®: CITY$: STATE$: ZIP%

20 IF VAL(ZIPs) < depeo OR VAL(ZIP$) » OGGEI8
THEN PRINT NAME$ TAB(25) "OUT OF STATE"

3@ IF VAL(ZIP$) > 90801 AND VAL(ZIP%) <= 8@815
THEN PRINT NAME$ TAB(Z3) "LONG BEACH"

2-173

VARPTR

Function
VARPTR (variable)
or ;
VARPTR (#buffer)

Returns the absolute memory address.

VARPTR can help you locate a value in memory. When used with
variable, it returns the address of the first byte of data identified with
variable.

When used with buffer, it returns the address of the file’s data buffer.

If the variable you specify has not been assigned a value, an “lllegal
Function Call” occurs. If you specify a buffer that was not allocated
when loading BASIC, a “Bad file number” error occurs. (See Chapter
1 for information on how to load BASIC.)

VARPTR is used primarily to pass a value to a machine-language
subroutine via USR[digit]. Since VARPTR returns an address which
indicates where the value of a variable is stored, this address can be
passed to a machine-language subroutine as the argument of USR,;
the subroutine can then extract the contents of the variable with the
help of the address that was supplied to it.

If VARPTR returns a negative address, add it to 65536 to obtain the
actual address.

If VARPTR(integer variable) returns address K:

Address K contains the least significant byte (LSB) of the 2-byte
integer.

Address K + 1 contains the most significant byte (MSB) of the
integer.

If VARPTR(single-precision variable) returns address K:

(K)* = LSB of value

(K + 1) = Next most significant byte(Next MSB)

(K + 2) = MSB with hidden (implied) leading one. Most
significant bit is the sign of the number

(K + 3) = exponent of value excess 128(128 is added to the

exponent).

*(K) signifies “contents of address K”

2-174

If VARPTR(double-precision variable) returns K:

(K) = LSB of value

(K + 1) = Next MSB

(K + ...) = Next MSB

(K + 6) = MSB with hidden (implied) leading one. Most
significant bit is the sign of the number.

(K + 7) = exponent of value excess 128 (128 is added to the

exponent).

For single and double-precision values, the number is stored in
normalized exponential form, so that a decimal is assumed before the
MSB. 128 is added to the exponent. Furthermore, the high bit of MSB
is used as a sign bit. It is set to 0 if the number is positive or to 1 if
the number is negative. See examples below.

If VARPTR(string variable) returns K:

(K) = length of string
(K + 1) = LSB of string value starting address
(K + 2) = MSB of string value starting address

The address will probably be in high RAM where string storage space
has been set aside. But, if your string variable is a constant (a string
literal), then it will point to the area of memory where the program line
with the constant is stored, in the program buffer area. Thus, program
statements like A$="HELLO” do not use string storage space.

For all of the above variables, addresses (K-1) and (K-2) stores the
TRS-80 Character Code for the variable name. Address (K-3)
contains a descriptor code that tells the computer what the variable
type is. Integer is 02; single precision is 04; double precision is 08;
and string is 03.

VARPTR(array variable) returns the address for the first byte of that
element in the array. The element consists of 2 bytes if it is an integer
array; 3 bytes if it is a string array; 4 bytes if it is a single precision
array; and 8 bytes if it is a double precision array.

The first element in the array is preceded by:

1. A sequence of two bytes per dimension, each two-byte pair
indicating the “depth” of each respective dimension.

2. A single byte indicating the total number of dimensions in the
array.

3. A two-byte pair indicating the total number of elements in the
array.

4. A two-byte pair containing the ASCII-coded array name.

2-175

5. A one-byte type-descriptor(02 = Integer, 03 = String, 04 =
Single-Precision, 08 = Double-Precision).

Item 1 immediately precedes the first element, ltem 2 precedes ltem
1, and so on.

The elements of the array are stored sequentially with the first
dimension-subscripts varying “fastest”, then the second, etc.

Examples
Al = 2 is stored as follows:

2 = 10 Binary, normalized as .1E2 = .1 x 10 (to the second)

So exponent of Ais 128+2 = 130 (called excess 128)

MSB of A is 10000000; however, the high bit is changed to zero since
the value is positive(called hidden or implied leading one).

So Al is stored as

Exponent (K + 3) MGB(K + 2) Next MSB(K + 1) LSB(K)
130 [? @
Al= — .5 is stored as

Exronent(K + 3) MEB(K + 2) Next MSB(K + 1) LSBB(K)
128 128 @ 0

Al=7 is stored as

Exponent (K + 3) MEB(K + 2) Next MSB(K + 1) LEB(K)
131 96]]
Al=-7:
Exponent (K + 3) MSB(K + 2) Next MSB(K + 1) LSB(K)
131 224 @ [

Zero is stored as a zero-exponent. The other bytes are insignificant.
Y = USRI(UARPTR(number))

If number is an integer value, VARPTR(number) finds the address of
the least significant byte of number. This address is passed to the
subroutine, which in turn passes its result to Y.

2-176

WAIT

Statement
WAIT port, integer1 [,integer2]

Suspends program execution until a machine input port develops a
specified bit pattern. (A port is an input/output location.)

The data read at the port is exclusive OR’ed with integer2, then
AND’ed with integer1. If the result is zero, BASIC loops back and
reads the data at the port again. If the result is nonzero, execution
continues with the next statement. If integer2 is omitted, it is assumed
to be zero.

It is possible to enter an infinite loop with the WAIT statement. In this
case, you will have to manually restart the machine. To avoid this,
WAIT must have the specified value at port number during some point
in program execution.

For information on assigned ports, refer to the Technical Reference
Manual.

Example
100 WAIT 32,2

2-177

WHILE WEND

Statement
WHILE expression

{loop statements}

WEND

Execute a series of statements in a loop as long as a given condition
is true.

If expression is not zero (true), BASIC executes loop statements until
it encounters a WEND. BASIC returns to the WHILE statement and
checks expression. If it is still true, BASIC repeats the process. If it is
not true, execution resumes with the statement following the WEND
statement.

WHILE/WEND loops may be nested to any level. Each WEND
matches the most recent WHILE. An unmatched WHILE statement
causes a “WHILE without WEND” error, and an unmatched WEND
causes a “WEND without WHILE” error.

Sample Program

99 ‘BUBBLE SORT ARRAY A%

10¢ FLIPS=1 ‘FORCE ONE PASS5 THRU LOOP

11¢ WHILE FLIPS

115 FLIPE=0

12¢ FOR I=1 TO J-1

130 IF A$(I)*AS(I+1)THEN SWAP A$(I), A$(I+1):
FLIPS=1

149 NEXT I

15¢ WEND

This program sorts the elements in array A$. Control falls out of the
WHILE loop when no more SWAPS are performed on line 130.

2-178

WIDTH

Statement
WIDTH [LPRINT, ...] size

Sets the line width in number of characters for the display or line
printer. If you omit the LPRINT option, BASIC sets the width at the
screen.

size may be an integer in the range 15 to 255 that specifies the
number of characters in a line. If you omit the LPRINT option, size
can be 15 to 80 for the screen.

If size is 255, the printer width is infinite. That is, BASIC never inserts
a carriage return. However, after printing the 255th character, LPOS
and POS return a value of 0.

Note: If you are using the TRSDOS program FORMS/FLT, the printer
width must be set at 255 for FORMS/FLT to function properly.

If you execute a WIDTH statement to change the width of the screen
or printer, we recommend that you execute another WIDTH statement
to restore the width to its default values before you exit BASIC.

When width is set less than the default values, BASIC issues a
carriage return after printing every size character. BASIC does not
separate the characters in a string unless the string is longer than the
total width of the screen. For example:

1¢ WIDTH 18
Z0 PRINT "ABCDEFGHIJKLMNOPORSTUVWXYZ"§"123456789@"
RUN

The screen displays:

ABCDEFGHIJKLMNOPOR
STUVHXYZ1234567890
Ready

After printing 18 characters of the string, BASIC issues a carriage
return and prints the remaining characters in the first string. BASIC
checks to see if there are enough positions left in the current line to
print the second string and prints the second string.

If a string contains less characters than the width but there are not
enough positions remaining on the current line, BASIC prints the
string on the next line. BASIC only separates the characters in a
string when the cursor is in the first column. For example:

2-179

12 WIDTH 18

20 PRINT " ABCDEFGHIJKLMNOPORSTUUVKWXYZ """
1234567890 "

RUN

The screen displays:

ABCDEFGHIJKLMNOPQ
RETUVWXYZ
1234567890
Ready

Before printing the first string, BASIC checks to see if there are
enough positions remaining on the current line to print the entire
string. The string contains 28 characters and the screen width is only
18. If the cursor is in Column 1, BASIC prints that portion of the string
that will fit on the line, issues a carriage return and prints the
remaining characters in the string on the next line. BASIC checks to
see if there are enough positions left on the line to print the second
string. There are only nine positions left on the current line and the
second string contains 12 characters. BASIC issues a carriage return
before printing the second string.

Example

1¢ WIDTH Z@
20 PRINT "Marion Rich"i"1Q82 Easy Street"s’
"Arlindtons TH 76013"

displays:

Marion Rich
192982 Easy Stireet
Arlindtons TH 76013

2-180

WRITE

Statement
WRITE [data, ... |

Writes data on the display.

WRITE prints the values of the data items you type. If data is omitted,
BASIC prints a blank line. The data may be numeric and/or string.
They must be separated by commas.

When the data are printed, each data item is separated from the last
by a comma. Strings are delimited by quotation marks. After printing
the last item on the list, BASIC inserts a carriage return.

Example

19 D=853:B=76:Y%="G00D BYE"
20 WRITE D By Vs

RUN

g5, 76, "GOOD BYE"

Ready

2-181

WRITE#

Statement
WRITE# buffer, data, . . .

Writes data to a sequential-access file.
Buffer must be the number used to OPEN the file.
The data you enter may be numeric or string expressions.

WRITE# inserts commas between the data items as they are written
to disk. It delimits strings with quotation marks. Therefore, it is not
necessary to put explicit delimiters between the data.

The items on data must be separated by commas.

WRITE# inserts a carriage return after writing the last data item to
disk.

For example, if
A%="MICROCOMPUTER" and B%="NEWS"
the statement
WRITE#1:+ A% :B%
writes the following image to disk:
"MICROCOMPUTER" s "NEWS"

2-182

Part I/ Appendices

Appendix Page
A/ Job Control Language e A-3
B/ Model 4 Hardware.............. oo, A-35
C/ Character Codes ... A-45
D/ Error Messages and Problems A-61
E/ Converting TRSDOS Version 1 BASIC Programs to

TRSDOS Version 6 BASIC Programs A-77
F/ BASIC Keywords and Derived Functions A-81
G/ BASIC Worksheets, A-85
H/ Glossary ... A-87
I/' TRSDOS Programs.c.uuiiinineeinnennnn. A-93
J/o Memory Maps ... A-105
K/ Using the Device-Related Commands A-108
L/ 50Hz AC Power ... A-117
M/ Backup Limited Diskettes A-119

§‘ Le
d
5"
|1t
e
O
e
1Q
1
1w

Appendix A/ Job Control Language

The TRSDOS Job Control Language (JCL) is one of the most
powerful features of TRSDOS. It consists of:

® TRSDOS commands
® Macros
@ Special symbols

You can use JCL to make your computer more “user friendly.” That
is, you can write JCL programs that perform a variety of functions,
such as FORMAT and BACKUP, and have TRSDOS execute these
functions when the user types in one command line.

If you have read the entries on the BUILD and DO commands, you
know how to create a JCL file composed of TRSDOS commands.
You can make this file more powerful by utilizing macros and other
features of JCL. This section describes how.

The steps for creating and using a JCL file are:

1. Create a JCL file consisting of TRSDOS commands, macros, or
special symbols. You can do this with the BUILD command,
SCRIPSIT, or a BASIC program.

2. Execute the JCL file with the DO command. This causes the JCL
processor to:

@ Take control of the keyboard (for line input)

® Read a line in the DO file exactly as if it came from the
keyboard

® Return control of the keyboard to the user when it reaches the
last line.

The following sections give complete information on all the JCL
features:

@ Simple JCL Execution
@ Simple JCL Compiling
® Advanced JCL Compiling

Simple JCL Execution

This section lists the execution macros and gives examples on how to
create and run a JCL file.

Creating a JCL File

A JCL file contains characters normally available from the keyboard
(ASCIl characters).

There are several ways to create a JCL file: the BUILD library
command lets you create or extend a JCL file, but it does not let you
edit an existing file. You can create and edit a JCL file with a BASIC
program. A word processing system, such as SCRIPSIT, will also let
you create or edit a JCL file.

Restrictions of JCL

@ A JCL file line cannot be longer than 79 characters. Depending on
the JCL method used (execute only or compile), JCL either ignores
all characters after the 79th or aborts the processing entirely.

@ Any program or utility with unpredictable prompts will not function
properly when run from a JCL file.

@ Any program or utility which requires removing the system disk
causes the JCL to abort.

@ You cannot execute certain TRSDOS library commands and utilities
from a JCL file. The commands and utilities NOT valid from a JCL
file are : certain BACKUP commands, BUILD, certain CONV
commands, all (X) commands, DEBUG, certain PURGE
commands, SYSGEN, and SYSTEM (SYSTEM =) command.

@ As a general rule, you should not use a library command or utility
when you specify the QUERY parameter.

A-4

Macro Group

Table 1/ Execution Macros

Group

Description

Macros

Macro
Description

Execution
Comment

.Comment

Displays a comment on
the screen during
execution. Comments
are written to
SYSTEM/JCL.

Termination
Macros

Terminate
execution.

//ABORT

HEXIT

//ISTOP

Stops execution,
displays "“Job aborted”.
Returns to TRSDOS or
BASIC Ready.

Stops execution,
displays “Job done™.
Returns to TRSDOS or
BASIC Ready.

Stops execution.
Returns control to the
user program.

Pause/Delay
Macros

Provide
special
functions.

//PAUSE

//IDELAY

IIWAIT

//ISLEEP

Suspends execution and
displays a message.
Suspends execution and
displays a message for
a specified amount of
time.

Suspends execution
depending upon the
setting of the system
clock.

Suspends execution for
a predetermined amount
of time.

Alert
Macros

Provide
video and

audio alerts.

//FLASH

/IALERT

Flashes a message on
the screen a specified
number of times.
Provides an audible
signal to the operator.

Keyboard
Macros

Accept key-
board input.

/IKEYIN

INPUT

Selects predefined
blocks of JCL lines.
Inputs a line of infor-
mation from the
keyboard.

JCL Execution Macros

A macro is a pre-defined JCL instruction. /ABORT is an example of a
macro symbol. Macro symbols must start at the first character position
in the line. An execution macro cannot be the first line in a JCL
file.

The JCL execution macros are:

//ABORT

Use this macro to exit a JCL procedure (if an error is encountered)
and return to the program that initiated the DO command.

Your system returns you to the calling program if your JCL processing
logic detects an error. The following message:

Job aborted

is displayed when an error is encountered.

//BLERT [(]tone.silence,tone,silence, . . .[)]

Use this macro to produce tones to the operator. /ALERT can
generate up to eight different tones using the sound generator inside
the computer.

You could use this macro to signify the end of a large JCL procedure.
It could also be used during the execution of a procedure to bring
attention to a specific process.

Tone is controlled by a number ranging from 0 - 7, with 7 producing
the lowest tone and 0 producing the highest tone.

The tone is followed by a period of silence which you select with a
second number ranging from 0 - 7, with 7 producing the longest
period of silence and 0 producing the shortest period of silence. Tone
and silence must be entered as number pairs (for example, “1,0”).
You can enter as many number pairs as can fit on one line.

You can repeat the tone-silence sequence by enclosing the entire
string in parentheses. The sequence keeps repeating until you press
ENTER), which continues execution of the JCL. Pressing (BREAK) aborts
the JCL.

Any value entered (for tone or silence) is used in its modulo 8 form.
That is, if you enter the number 8, a zero value is assumed. For
example, the value 10 produces the tone assigned to 2.

//DELAY duration

The //DELAY macro provides a definite timed pause with execution
automatically continuing at the end of the delay. The actual delay will
be approximately 0.1 second per count. The count ranges from 1 to
256. Thus, a delay of from 0.1 second to 25.6 seconds is possible.

A-6

You could use the /DELAY macro to suspend execution long enough
for you to make sure the printer is ready to print.

The execution time of a /DELAY macro will vary slightly according to
the speed TRSDOS is running under (FAST or SLOW). See the
SYSTEM library command.

//EXIT

Use this macro to halt execution of JCL processing and return to the
program that initiated the DO command.

If you do not enter a termination macro in a JCL file, the JCL
processing terminates when it reaches the end of the file (as if /EXIT
were the last line in the JCL file). The following message is displayed:

Job done
This message indicates a normal conclusion of the JCL file.

You should use /EXIT if the conclusion of the JCL file also represents
the conclusion of the job that is running. So, /EXIT can be used to
conclude a program that does not require any more keyboard input,
and needs to return to TRSDOS Ready or BASIC Ready after it
finishes.

To conclude a program that requires additional keyboard input, use
the //STOP macro. Using the /EXIT macro would terminate the
program.

//[FLASH [duration]| message

This macro flashes message on and off the video screen. duration is
the number of times the message will flash and can be any number
from 0 to 255. If duration is not specified, the message flashes 256
times. The message is any comment that you want displayed (up to
72 characters).

//KEYIN [comment string]

Use this macro to prompt for a single character entry (0 - 9), with the
entire /KEYIN line being displayed.

During execution, press the appropriate character (0 - 9) to select the
corresponding execution block in a JCL file. There can be up to ten
execution blocks in a JCL file, each tagged with // and a number 0 - 9.

Do not use //KEYIN to enter data at execution time. If you do need to
enter data at execution time, use the /INPUT macro.
//INPUT [message string]|

Use this macro to input a line from the keyboard during JCL
execution. With this macro, control of the keyboard is temporarily

A-7

returned to the operator. Now, any command can be typed on the
keyboard and then passes to the system.

The number of characters allowed in the input line depends on where
the JCL execution is when the //INPUT is encountered. For example,
if the JCL is executing at the TRSDOS Ready level, then you can
enter up to 80 characters, the same as for a normal TRSDOS
command. If the /INPUT is encountered after going into BASIC, then
you can enter up to 255 characters.

When you use the //INPUT macro, you should exercise some caution
to assure that the command typed in is valid at the level it will be
executed. For example, if you enter a program name incorrectly, the
error message “Program not found” is displayed and the JCL
execution aborts.

//PAUSE [message string]

When this macro is encountered in an executing JCL file, it is
displayed on the screen along with a message. You can use the
message to inform the operator why the pause was ordered. Press
to resume JCL execution, or press to abort the JCL.

The /DELAY, //WAIT, and /SLEEP macros are similar to the
//PAUSE macro, and are used to give JCL execution a specific delay
period.

//SLEEP hh:mm:ss

Use this macro to put the system “to sleep” for the amount of time
you specify.

//SLEEP adds the specified time to the current system time and waits
until that time to begin or resume execution.

Suppose you have two programs that begin execution every morning
at 10 o’clock and each program runs for two hours. You could
execute the first program and have the /SLEEP macro “halt”
execution of the second program for an hour lunch break. After the
system “sleeps” for the specified hour, the second program is
executed.

/ISTOP

Use this macro to halt execution of a JCL file and return keyboard
control to the applications program that requests additional keyboard
input.

If you do not use the //STOP macro, you automatically return to
TRSDOS Ready or BASIC Ready. You can also use the //ABORT
and //EXIT macros to force an end to the JCL execution and return to
TRSDOS Ready or BASIC Ready.

A-8

[/WAIT hh:mm:ss

The //WAIT macro is similar to /DELAY, except that the length of the
delay depends on the setting of the system clock.

The //WAIT macro puts the entire system in a “sleep” state until the
system clock matches the time you specified.

You can set the system clock with the TIME library command. You
can also set the time from a JCL file by using a direct execution of
the TIME library command, or with the /INPUT macro. Set the clock
in the format hh:mm:ss.

Examples
The easiest JCL file to understand is one containing only commands.

Use the BUILD command to create the following JCL file named
START/JCL:

DEVICE
FREE

If you issue a DO = START command (see the DO library
command), your computer displays the device table, lists free space
information about all enabled drives, and returns to TRSDOS Ready.

Because an execution macro cannot be the first line in a JCL file,
you could use an execution comment to display an informative
message as the JCL file begins to execute. An execution
comment begins with a period, which must be in the first
character position of the line. You could label START/JCL as
follows:

+« This Pprodram executes the DEVICE and FREE
commanrds,

DEVICE

FREE

/TEXIT

This comment describing the file’s purpose is displayed when the JCL
executes. Notice that we added the termination macro //EXIT.

You can use the /PAUSE macro in START/JCL as follows:

+ This Prodram executes the DEVICE and FREE
library commands.

//PAUSE Be sure the correct diskK is inm Drive @1
DEVICE

FREE

FTEXRIT

A-9

This example suspends the JCL before DEVICE executes, so you can
be sure that the correct disk is in Drive 0. Press to continue
the JCL.

You can use the /DELAY macro if you want to display an informative
message to the operator. For example:

+ BE BURE THAT THE PRINTER IS TURNED ON!

//DELAY 3@
DEVICE (P)
FREE (P)
//EXIT

This example displays the above informative message and delays
execution for approximately 5 seconds. After t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>